ZHANG Yonghai,GU Weiwei,WANG Chunyan,et al.Reason analysis on typical failures of low-pressure second last stage moving blades of large scale steam turbine before and after optimization[J].Thermal Power Generation,2023,52(01):158-164.[doi:10.19666/j.rlfd.202207178]
大型汽轮机低压次末级动叶片优化前后典型故障原因分析
- Title:
- Reason analysis on typical failures of low-pressure second last stage moving blades of large scale steam turbine before and after optimization
- 摘要:
- 某型汽轮机低压次末级动叶片优化前后均出现了次叶片断裂和裂纹故障问题,为了查明该型叶片故障原因以防止后续再次发生,对叶片故障情况、运行参数及历史记录等进行检查,对部分故障叶片材料和断口进行理化检验分析,并采用有限元法对优化前后叶片离心应力和轮系振动特性进行数值分析。结果表明:叶片断口为高周疲劳断裂;优化前叶片出汽侧内弧面顶部与围带连接过渡处产生裂纹并断裂的主要原因是工作状态下叶片产生较大的扭转恢复,使围带发生严重挤压,在出汽侧内弧面顶部与围带连接过渡处产生应力集中和疲劳损伤,叶根结构设计不合理是叶片叶根发生高周疲劳开裂的主要因素,而叶片叶轮系统6节径1阶振动落入“三重点”共振区是叶片故障的次要因素;优化后叶片叶根断裂的主要原因为叶根结构设计不合理,而叶片叶轮系统11节径2阶振动落入“三重点”共振区是叶片叶根故障产生的次要因素。
参考文献/References:
[1] 宋文希, 谷伟伟, 张永海, 等. 某600 MW汽轮机低压第6级动叶片断裂原因分析[J]. 汽轮机技术, 2018, 60(1): 66-68.
SONG Wenxi, GU Weiwei, ZHANG Yonghai, et al. Fracture reason analysis for the low pressure 6th stage blade of a 600 MW unit steam turbine[J]. Turbine Technology, 2018, 60(1): 66-68.
[2] 张永海, 肖俊峰, 谷伟伟, 等. 600 MW机组汽轮机低压第5级动叶片断裂故障分析[J]. 热力发电, 2013, 42(11): 130-133.
ZHANG Yonghai, XIAO Junfeng, GU Weiwei, et al. Reason analysis for the fifth stage blade fracture in low pressure cylinder of a 600 MW unit steam turbine[J]. Thermal Power Generation, 2013, 42(11): 130-133.
[3] 嵇安森. 引进型300 MW、600 MW汽轮机低压次末级(474 mm)叶片失效分析研究[J]. 汽轮机技术, 2002, 44(4): 224-227.
JI Ansen. Study and analysis of the low-tension secondary last stage 474 mm blade’s inefficacy of the import 300 MW and 600 MW steam turbine[J]. Turbine Technology, 2002, 44(4): 224-227.
[4] 刘志江, 袁平, 蔡礼东. 一台300 MW汽轮机次末级叶片断裂损伤原因分析[J]. 中国电力, 2000, 33(6): 7-10.
LIU Zhijiang, YUAN Ping, CAI Lidong. Cause analysis of cracking damage on the second last stage blades of one 300 MW steam turbine[J]. Electric Power, 2000, 33(6): 7-10.
[5] 陈瑞龙. 汽轮机低压叶片断裂原因分析[J]. 热力发电, 2011, 41 (5): 99-101.
CHEN Ruilong. Cause analysis of low-pressure blade rupture one steam turbine[J]. Thermal Power Generation, 2012, 41(5): 99-101.
[6] 牛玉静, 冯文吉, 蒋成虎, 等. 汽轮机低压转子叶片断裂原因分析[J]. 上海金属, 2017, 39(1): 65-69.
NIU Yujing, FENG Wenji, JIANG Chenghu, et al. Fracture analysis of low-pressure rotor for steam turbine[J]. Shanghai Metals, 2017, 39(1): 65-69.
[7] 陈红冬, 魏继龙, 焦庆丰, 等. 300 MW机组低压转子次次末级叶片断裂故障原因分析及处理[J]. 中国电力, 2008, 41(5): 15-18.
CHEN Hongdong, WEI Jilong, JIAO Qingfeng, et al. Fault analysis and treatment for the rupture on the third last-stage blading of 300 MW HP rotors[J]. Electric Power, 2008, 41(5): 15-18.
[8] 张永海, 谷伟伟, 曾立飞, 等. 某电厂给水泵汽轮机第3级动叶片断裂原因分析[J]. 汽轮机技术, 2020, 62(6): 455-458.
ZHANG Yonghai, GU Weiwei, ZENG Lifei, et al. Fracture reason analysis for 3th stage blade of the feed pump steam turbine of a power plant[J]. Turbine Technology, 2020, 62(6): 455-458.
[9] 薛育龙, 张文奇, 李改娣, 等. 超临界350 MW机组给水泵汽轮机第5级动叶片断裂原因调查分析[J]. 汽轮机技术, 2022, 64 (2): 136-140.
XUE Yulong, ZHANG Wenqi, LI Gaidi, et al. Fracture analysis on the fifth stage moving blade of feed water pump turbines of a supercritical 350 MW unit[J]. Turbine Technology, 2022, 64(2): 136-140.
[10] 薛朝囡, 高登攀, 张永海, 等. 基于现场热力参数的汽轮机通流部分故障诊断方法及应用[J]. 热力发电, 2021, 50(4): 143-148.
XUE Zhaonan, GAO Dengpan, ZHANG Yonghai, et al. Fault diagnosis method of turbine flow passage based on on-site thermal parameters and its application[J]. Thermal Power Generation, 2021, 50(4): 143-148.
[11] 谷伟伟, 张永海, 李园, 等. 某电厂600 MW机组轴流引风机叶片断裂原因分析[J]. 热力发电, 2017, 46 (12): 129-132.
GU Weiwei, ZHANG Yonghai, LI Yuan, et al. Reason analysis for fracture occurred in axial induced draft fan blade of a 600 MW unit[J]. Thermal Power Generation, 2017, 46(12): 129-132.
[12] 徐开, 史啸曦, 刘伟平, 等. 1 000 MW超超临界机组小汽轮机22Cr12NiWMoV叶片失效分析[J]. 发电设备, 2022, 36(2): 100-105.
XU Kai, SHI Xiaoxi, LIU Weiping, et al. Fracture failure analysis of 22Cr12NiWMoV blade of small turbine in a 1 000 MW USC unit[J]. Power Equipment, 2022, 36(2): 100-105.
[13] 肖中图, 史志刚, 李春光, 等. 给水泵汽轮机动叶片微动磨损疲劳断裂的失效特征分析[J]. 热力发电, 2021, 50(6): 157-162.
XIAO Zhongtu, SHI Zhigang, LI Chunguang, et al. Failure characteristics analysis for fretting wear fatigue fracture of feed pump turbine blades[J]. Thermal Power Generation, 2021, 50(6): 157-162.
[14] 刘俊建. 汽动给水泵汽轮机叶片失效分析[J]. 上海金属, 2018, 40(6): 90-95.
LIU Junjian. Analysis on failure of turbine blade of steam-driven feedwater pump[J]. Shanghai Metals, 2018, 40(6): 90-95.
[15] 刘志敏, 石永锋. 汽轮机低压转子末级叶片断裂分 析[J]. 发电设备, 2021, 35(4): 253-257.
LIU Zhimin, SHI Yongfeng. Fracture analysis for the last stage blade in low-pressure rotor of steam turbine[J]. Power Equipment, 2021, 35(4): 253-257.
[16] 李永乐, 骆贵兵, 杨辉. 静叶可调轴流式引风机叶片断裂原因分析及对策[J]. 热力发电, 2021, 50(4): 114-119.
LI Yongle, LUO Guibing, YANG Hui. Cause analysis and countermeasures for blade fracture of static blade adjustable axial flow induced draft fan[J]. Thermal Power Generation, 2021, 50(4): 114-119.
[17] 张春梅, 周克澄. 515 mm叶片的安全性分析[J]. 机械工程师, 2011(12): 162-163.
ZHANG Chunmei, ZHOU Kecheng. Safety analysis of 515mm blade[J]. Mechanical Engineer, 2011(12): 162-163.
[18] 谷伟伟, 张永海. 余小兵, 等. 某电厂汽轮机低压缸零出力供热工况低压末级叶片动强度分析[J]. 热力发电, 2018, 47(5): 63-70.
GU Weiwei, ZHANG Yonghai, YU Xiaobing, et al. Dynamic strength analysis of the low pressure last stage blade under zero-output heating conditions of low pressure cylinder in a power plant[J]. Thermal Power Generation, 2018, 47(5): 63-70.
[19] 谷伟伟, 张永海, 余小兵, 等. 超超临界汽轮机调节级叶片汽流弯应力数值计算[J]. 热力发电, 2014, 43(9): 33-37.
GU Weiwei, ZHANG Yonghai, YU Xiaobing, et al. Numerical analysis on stream bending stress on control stage blade of an ultra supercrical unit steam turbine[J]. Thermal Power Generation, 2014, 43(9): 33-37.
[20] 张先鸿, 王叒. 700毫米长叶片枞树型叶根各齿受力分布的计算分析[J]. 热力透平, 1990(1): 50-54.
ZHANG Xianhong, WANG Ruo. Calculation and analysis of the force distribution on the roots of 700 mm long fir-tree-shaped leaves[J]. Thermal Turbine, 1990(1): 50-54.
[21] 谈伟, 李文福. 三齿枞树型叶根轮槽型线优化设计[J]. 热力透平, 2019, 48 (4): 275-279.
TAN Wei, LI Wenfu. Optimization on groove profile in trident fir-tree blade root[J]. Thermal Turbine, 2019, 48(4): 275-279.
[22] 史进渊, 杨宇, 邓志成, 等. 汽轮机零部件强度有限元分析的设计判据[J]. 热力透平, 2011, 40(1): 22-27.
SHI Jinyuan, YANG Yu, DENG Zhicheng, et al. Design criteria of strength finite element analysis for steam turbine components[J]. Thermal Turbine, 2011, 40(1): 22-27.
[23] 王娟丽, 尹明艳, 周帅, 等. 汽轮机末级叶片的气动优化及分析[J]. 东方汽轮机, 2019 (3): 15-19.
WANG Juanli, YIN Mingyan, ZHOU Shuai, et al. Aerodynamic optimization and analysis for last stage of steam turbine[J]. Dongfang Turbine, 2019(3): 15-19.
[24] 丁有宇. 汽轮机强度计算手册[M]. 北京: 中国电力出版社, 2010: 186-216.
DING Youyu. Steam turbine strength calculation manual[M]. Beijing: China Electric Power Press, 2010: 186-216.
[25] 杨光海. 汽轮机叶片的安全防护[M]. 北京: 机械工业出版社, 1992: 52-66.
YANG Guanghai. Safety protection of turbine blades[M]. Beijing: China Machine Press, 1992: 52-66.
(责任编辑 杜亚勤)
相似文献/References:
[1]叶绍义,沈 琦.玉环电厂超超临界1 000 MW汽轮机组快冷系统的应用[J].热力发电,2009,(08):89.
YE Shao-yi,SHEN Qi.APPLICATION OF RAPID COOLING-DOWN TECHNOLOGY ONTO ULTRA-SUPERCRITICAL STEAM TURBINE IN YUHUAN POWER PLANT[J].Thermal Power Generation,2009,(01):89.
[2]柏月梅,王浩森,王 昊.汽轮机监视仪表及其瞬态数据管理系统配置的优化改造[J].热力发电,2009,(08):125.
BAI Yue-mei,WANG Hao-sen,WANG Hao.RETROFIT FOR OPTIMIZING ALLOCATION OF TURBINE’S SUPERVISORY INSTRUMENTS AND TRANSIENT DATA MANAGEMENT SYSTEM[J].Thermal Power Generation,2009,(01):125.
[3]梁 军,徐亚涛.高压缸疏水管道超温爆破失效分析[J].热力发电,2009,(08):129.
LIANG Jun,XU Ya-tao.FAILURE ANALYSIS OF OVER-TEMPERATURE BURST ON DRAIN PIPELINE FROM HIGH-PRESSURE CYLINDER[J].Thermal Power Generation,2009,(01):129.
[4]罗海华,黄 文,吴金星,等.国内超超临界百万千瓦等级机组汽轮机旁路系统选型[J].热力发电,2009,(09):11.
LUO Hai-hua,HUANG Wen,WU Jin-xing,et al.TYPE SELECTION OF TURBINES’ BY-PASS SYSTEM FOR ULTRA-SUPERCRITICAL UNITS WITH 1 000 MW CAPACITY IN CHINA[J].Thermal Power Generation,2009,(01):11.
[5]何映光.300 MW循环流化床锅炉压火对机组的影响分析[J].热力发电,2009,(09):48.
HE Ying-guang.ANALYSIS ABOUT INFLUENCE OF BANKING FIRE IN 300 MW CFB BOILER UPON THE UNIT[J].Thermal Power Generation,2009,(01):48.
[6]王 琳,杨小飞,盛步云.基于LabVIEW的汽轮机转子温度监测系统[J].热力发电,2009,(10):61.
WANG Lin,YANG Xiao[CD*]fei,SHENG Bu[CD*]yun.TEMPERATURE MONITORING SYSTEM FOR STEAM TURBINE ROTOR BASED ON LABVIEW[J].Thermal Power Generation,2009,(01):61.
[7]付建国,曹金忠,刘金川,等.挂闸电磁阀卡涩对220 MW汽轮机组运行安全影响的分析和防范措施[J].热力发电,2009,(05):0.
[8]陈华桂,田 莉.超超临界600 MW汽轮发电机组振动分析与处理[J].热力发电,2009,(06):0.
[9]司派友,左 川.联合循环机组汽轮机深度滑参数停机[J].热力发电,2009,(06):0.
[10]陈 星,李红平.超临界600 MW机组锅炉起动初期过热器超温的原因及控制[J].热力发电,2009,(07):0.
备注/Memo
张永海(1977),男,硕士,高级工程师,主要研究方向为汽轮机部件故障原因分析及安全评估等,zhangyonghai@tpri.com.cn。