[1]方旭东,王雨舟,包汉生,等.超超临界锅炉烟气环境中S31042、S31035、C-HRA-5奥氏体耐热钢热腐蚀行为研究[J].热力发电,2023,52(01):111-122.[doi:10.19666/j.rlfd.202205105]
 FANG Xudong,WANG Yuzhou,BAO Hansheng,et al.Hot corrosion behaviors of austenitic heat-resistant steels S31042, S31035, and C-HRA-5 in flue gas environment of ultra-supercritical coal-fired boilers[J].Thermal Power Generation,2023,52(01):111-122.[doi:10.19666/j.rlfd.202205105]
点击复制

超超临界锅炉烟气环境中S31042、S31035、C-HRA-5奥氏体耐热钢热腐蚀行为研究

参考文献/References:

[1] 马双忱, 杨鹏威, 王放放, 等. “双碳”目标下传统火电面临的挑战与对策[J]. 华电技术, 2021, 43(12): 36-45.
MA Shuangchen, YANG Pengwei, WANG Fangfang, et al. Challenges and countermeasures of traditional thermal power under the goals of carbon neutrality and carbon peaking[J]. Huadian Technology, 2021, 43(12): 36-45.
[2] 李少华, 刘利, 彭红文. 超超临界发电技术在中国的发展现状[J]. 煤炭加工与综合利用, 2020(2): 65-70, 74.
LI Shaohua, LIU Li, PENG Hongwen. The present situation of the development of ultra-supercritical power generation technology in China[J]. Coal Processing & Comprehensive Utilization, 2020(2): 65-70, 74.
[3] 封帆, 王美玲, 李振华, 等. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
FENG Fan, WANG Meiling, LI Zhenhua, et al. Research progress of austenitic heat resistant steel HR3C used for ultra supercritical unit[J]. Materials Reports, 2021, 35(9): 9186-9195.
[4] 张新, 蔡文河, 杜双明, 等. Sanicro25耐热钢的研究现状及应用前景[J]. 机械工程材料, 2019, 43(1): 1-7.
ZHANG Xin, CAI Wenhe, DU Shuangming, et al. Research situation and application prospect of Sanicro25 heat-resistant steel[J]. Materials for Mechanical Engineering, 2019, 43(1): 1-7.
[5] 刘巍栋, 蔡文河, 赵勇, 等. 630~650 ℃超超临界参数锅炉受热面管备选材料建议[J]. 钢铁研究学报, 2021, 33(9): 891-900.
LIU Weidong, CAI Wenhe, ZHAO Yong, et al. Suggestion on alternative heated surface tube materials for 630~650 ℃ ultra-supercritical units[J]. Journal of Iron and Steel Research, 2021, 33(9): 891-900.
[6] 李萍, 李安娜, 庞胜娇, 等. HR3C抗高温硫酸盐腐蚀行为研究[J]. 大连理工大学学报, 2013, 53(5): 685-688.
LI Ping, LI Anna, PANG Shengjiao, et al. Research on behavior of HR3C to resist high temperature sulfate corrosion[J]. Journal of Dalian University of Technology, 2013, 53(5): 685-688.
[7] 李琰, 鲁金涛, 杨珍, 等. 锅炉奥氏体不锈钢在模拟煤灰和高硫烟气环境中腐蚀行为的研究[J]. 动力工程学报, 2017, 37(2): 156-162.
LI Yan, LU Jintao, YANG Zhen, et al. Corrosive behaviors of austenitic stainless steels for boiler in simulated coal ash and high sulfur flue gas[J]. Journal of Chinese Society of Power Engineering, 2017, 37(2): 156-162.
[8] 李建三, 刘洋, 袁周. 3种介质对T92钢高温腐蚀行为的影响[J]. 腐蚀与防护, 2018, 39(6): 437-442.
LI Jiansan, LIU Yang, YUAN Zhou. Influence of three corrosive media on high-temperature corrosion behavior of T92 steel[J]. Corrosion & Protection, 2018, 39(6): 437-442.
[9] 鲍颖群, 苟远波, 梁志远. 高效超超临界机组用材HR3C和HR6W的热腐蚀行为及机理研究[J]. 材料保护, 2020, 53(7): 154-161.
BAO Yingqun, GOU Yuanbo, LIANG Zhiyuan. Hot corrosion behavior and mechanism of HR3C and HR6W used in advanced ultra-supercritical power plant[J]. Materials Protection, 2020, 53(7): 154-161.
[10] 成丁南, 张知翔, 边宝, 等. 5种电站锅炉过热器用材料高温腐蚀试验研究[J]. 动力工程学报, 2012, 32(11): 891-897.
CHENG Dingnan, ZHANG Zhixiang, BIAN Bao, et al. Experimental study on high temperature corrosion of five superheater materials for power plant boilers[J]. Journal of Chinese Society of Power Engineering, 2012, 32(11): 891-897.
[11] DUDZIAK T, HUSSAIN T, SIMMS N J, et al. Fireside corrosion degradation of ferritic alloys at 600 ℃ in oxy-fired conditions[J]. Corrosion Science, 2014, 79: 184-191.
[12] HUSSAIN T, SYED A U, SIMMS N J. Trends in fireside corrosion damage to superheaters in air and oxy-firing of coal/biomass[J]. Fuel, 2013, 113: 787-797.
[13] NATESAN K, PARK J H. Fireside and steamside corrosion of alloys for USC plants[J]. International Journal of Hydrogen Energy, 2007, 32(16): 3689-3697.
[14] 黄丽琴, 刘光明, 张民强, 等. Super304H和HR3C奥氏体钢在模拟锅炉高硫气氛中的腐蚀行为[J]. 材料热处理学报, 2017, 38(9): 155-161.
HUANG Liqin, LIU Guangming, ZHANG Minqiang, et al. Corrosion behavior of Super304H and HR3C austenitic steels in simulated flue-gas boiler environ-ments with high sulfur concentration[J]. Transactions of Materials and Heat Treatment, 2017, 38(9): 155-161.
[15] 赵双群, 谢锡善, SMITHG D. 新型Ni-Cr-Co基高温合金在模拟煤燃烧环境中的高温腐蚀[J]. 中国有色金属学报, 2004(3): 340-345.
ZHAO Shuangqun, XIE Xishan, SMITH G D. High temperature corrosion of new Ni-Cr-Co base superalloy in coal-fired environments[J]. The Chinese Journal of Nonferrous Metals, 2004(3): 340-345.
[16] LIANG Z Y, YU M, ZHAO Q X. Investigation of fireside corrosion of austenitic heat-resistant steel 10Cr18Ni9Cu3NbN in ultra-supercritical power plants[J]. Engineering Failure Analysis, 2019, 100: 180-191.
[17] 汪元奎, 黄丽琴, 刘光明, 等. Super304H钢在含1.5% SO2模拟烟气中的腐蚀行为研究[J]. 表面技术, 2017, 46(12): 199-205.
WANG Yuankui, HUANG Liqin, LIU Guangming, et al. Corrosion behavior of Super304H steel in 1.5% SO2 simulated fuel gas[J]. Surface Technology, 2017, 46(12): 199-205.
[18] 于明明, 刘光明, 杨华春. 奥氏体耐热钢Sanicro25在不同SO2体积分数模拟烟气中的腐蚀研究[J]. 发电设备, 2019, 33(3): 193-196.
YU Mingming, LIU Guangming, YANG Huachun. Corrosion behavior of austenitic heat-resistant steel Sanicro25 in flue gas with different SO2 concentrations[J]. Power Equipment, 2019, 33(3): 193-196.
[19] 张民强, 黄丽琴, 刘光明, 等. S30432在不同煤灰/烟气环境中的高温腐蚀行为研究[J]. 表面技术, 2018, 47(8): 251-256.
ZHANG Minqiang, HUANG Liqin, LIU Guangming, et al. High temperature corrosion behavior of S30432 in different coal ash/flue gas[J]. Surface Technology, 2018, 47(8): 251-256.
[20] 李萍, 秦鹏, 庞胜娇, 等. Super304H在模拟烟气环 境下的腐蚀行为[J]. 材料热处理学报, 2015, 36(10): 210-217.
LI Ping, QIN Peng, PANG Shengjiao, et al. Study on corrosion behavior of Super304H steel in simulated furnace atmosphere[J]. Transactions of Materials and Heat Treatment, 2015, 36(10): 210-217.
[21] KIM J H, KIM D I, SHIM J H, et al. Investigation into the high temperature oxidation of Cu-bearing austenitic stainless steel using simultaneous electron backscatter diffraction-energy dispersive spectroscopy analysis[J]. Corrosion Science, 2013, 77: 397-402.
[22] YANG X, PENG X, WANG F. Hot corrosion of a novel electrodeposited Ni-6Cr-7Al nanocomposite under molten (0.9Na, 0.1K)2SO4 at 900 ℃[J]. Scripta Materialia, 2007, 56(10): 891-894.
[23] STEIN-BRZOZOWSKA G, NORLING R, VIKLUND P, et al. Fireside corrosion during oxy fuel combustion considering various SO2 contents[J]. Energy Procedia, 2014, 51: 234-246.
[24] LUTZ B S. A comparison of the corrosion products and mechanisms of various forms of deposit-induced corrosion at 700 ℃[D]. Pennsylvania: University of Pittsburgh, 2012: 34-35.
[25] SHANG C G, XIN L, XU Q L, et al. Fireside corrosion of P92 steel with mixed sulfate deposit at 650 ℃[J]. Oxida-tion of Metals, 2020, 94(3/4): 323-341.
[26] TSAUR C C, ROCK J C, WANG C J, et al. The hot corrosion of 310 stainless steel with pre-coated NaCl/ Na2SO4 mixtures at 750 ℃[J]. Materials Chemistry and Physics, 2005, 89(2/3): 445-453.
[27] 石践. 700 ℃超超临界锅炉过热器管候选材料在不同 介质中的高温腐蚀研究[D]. 北京: 华北电力大学, 2017: 18.
SHI Jian. Research on high temperature corrosion of candidate alloy of 700 ℃ ultra-supercritical boiler super-heater in different medium[D]. Beijing: North China Electric Power University, 2017: 18.
[28] K?NIG T, MONTERO X, GALETZ M C. Hot corrosion type II of FeCr-based model alloys for boiler and heat exchanger applications[J]. Materials and Corrosion, 2019, 70(8): 1371- 1384.
[29] LUTZ B S, HOLCOMB G R, MEIER G H. Determination of the Initiation and propagation mechanism of fireside corrosion[J]. Oxidation of Metals, 2015, 84(3/4): 353-381.
(责任编辑 邓玲惠)

相似文献/References:

[1]窦 洪1,戴 沅1,王 伟1,等.超(超)临界机组奥氏体不锈钢管基于氧化物堆积的寿命评估[J].热力发电,2011,(06):38.
 DOU Hong,DAI Yuan,WANG Wei,et al.LIFE ASSESSMENT BASED ON OXIDES'DEPOSITION FOR AUSTENITIC STAINLESS STEEL TUBES USED IN ULTRA - SUPERCRITICAL UNITS[J].Thermal Power Generation,2011,(01):38.
[2]许英坚.欧洲700℃先进超临界技术发展计划概况[J].热力发电,2005,(09):0.
[3]邓平,王伟,汪淑奇,等.超超临界锅炉含微裂纹HR3C受热面J积分数值模拟[J].热力发电,2014,(03):58.
 DENG Ping,WANG Wei,WANG Shuqi,et al.Numerical study on Jintegral of HR3C heating surface with microcracks for ultra supercritical boilers[J].Thermal Power Generation,2014,(01):58.
[4]赵炜炜,楼玉民,彭以超,等.超超临界锅炉低温再热器垂直段频繁爆管原因分析[J].热力发电,2020,49(02):121.[doi:10.19666/j.rlfd.201908184 ]
 ZHAO Weiwei,LOU Yumin,PENG Yichao,et al.Cause analysis of frequent tube burst of vertical section of low-temperature reheater in ultra-supercritical boiler[J].Thermal Power Generation,2020,49(01):121.[doi:10.19666/j.rlfd.201908184 ]
[5]肖 博,朱忠亮,李瑞涛,等.超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展[J].热力发电,2020,49(10):30.[doi:10.19666/j.rlfd.202006155 ]
 XIAO Bo,ZHU Zhongliang,LI Ruitao,et al.Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid[J].Thermal Power Generation,2020,49(01):30.[doi:10.19666/j.rlfd.202006155 ]

备注/Memo

方旭东(1975),男,硕士,正高级工程师,主要研究方向为超超临界电站锅炉用不锈钢管坯及无缝管开发及应用,fangxd@tisco.com.cn。

更新日期/Last Update: 2023-01-15