LI Ji,ZHAN Yingjie,TANG Liying,et al.Surface property of Incoloy 800H alloy in alkaline high-temperature and high-pressure water[J].Thermal Power Generation,2023,52(01):98-104.[doi:10.19666/j.rlfd.202205092]
Incoloy 800H合金在碱性高温高压水中的表面特性研究
- Title:
- Surface property of Incoloy 800H alloy in alkaline high-temperature and high-pressure water
- 关键词:
- Incoloy 800H合金; 高温气冷堆; 表面特性; 碱性高温高压水
- 摘要:
- 对675 ℃时效0~10 000 h的Incoloy 800H合金(800H合金)在300 ℃/10 MPa的碱性高温高压水化学环境中的腐蚀电化学行为和氧化膜显微特征进行了系统研究。通过腐蚀电化学测试、长期浸泡、扫描电镜/透射电镜观察、拉曼光谱/快速傅里叶变化分析等方法,掌握了800H合金腐蚀电化学行为、表面膜形态成分特征随时效时间的变化规律。研究结果表明:时效处理可使800H合金传热管在高温高压水中的开路电位和自腐蚀电位Ecorr小幅升高,但时效时间延长对电化学行为影响不显著;800H合金在高温高压水中呈现钝化过钝化转变,生成的氧化膜呈多层结构,最外层为弥散分布的大颗粒氧化物,组成为Fe2O3或NiFe2O4;中间层为较为致密的小尺寸氧化物,多为NiFe2O4或FeCr2O4;内层则是致密且连续的氧化物,为含Cr和少量Fe的非晶或纳米晶氧化物。800H合金在300 ℃/10 MPa的碱性高温高压水中具有较好的抗腐蚀性和表面稳定性。
参考文献/References:
[1] TAN L, RAKOTOJAONA L, ALLEN T R, et al. Microstructure optimization of austenitic alloy 800H (Fe-21Cr-32Ni)[J]. Materials Science and Engineering A, 2011, 528: 2755-2761.
[2] AKHIANI H, NEZAKAT M, SONBOLI A, et al. The origin of annealing texture in a cold-rolled Incoloy 800H/HT after different strain paths[J]. Materials Science and Engineering A, 2014, 619: 334-344.
[3] ZHANG Z, DONG Y, LI F, et al. The Shandong Shidao Bay 200 MWe high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant: an engineering and technological innovation[J]. Engineering, 2016, 2(1): 112-118.
[4] SUN X M, DONG Y J, ZHOU Y P, et al. Effects of reaction temperature and inlet oxidizing gas flow rate on IG-110 graphite oxidation used in HTR-PM[J]. Journal of Nuclear Science and Technology, 2016, 54(2): 196-204.
[5] PRASITTHIPAYONG A, VACHHANI S J, TUMEY S J, et al. Indentation size effect in unirradiated and ion-irradiated 800H steel at high temperatures[J]. Acta Materialia, 2018, 144: 896-904.
[6] POLMAN E A, FRANSEN T, GELLINGS P J. High-temperature corrosion and mechanical properties of protective scales on Incoloy 800H: the influence of preoxidation and ion implantation[J]. Oxidation of Metals, 1990, 33: 135-155.
[7] XIAO H, BSAT S. Corrosion behaviour of alloy 800H in low density superheated steam[J]. ISIJ International, 2016, 56(6): 1067-1075.
[8] 杨珍, 鲁金涛, 乐明, 等. Incoloy800H合金在高温纯水蒸气中的氧化行为[J]. 机械工程材料, 2018, 42(1): 1-6.
YANG Zhen, LU Jintao, LE Ming, et al. Oxidation behavior of Incoloy800H alloy in high-temperature pure water[J]. Materiasl for Mechanical Engineering, 2018, 42(1): 1-6.
[9] 沈朝, 吴恋恋, 张乐福, 等. 镍基合金800H的腐蚀性能研究[J]. 腐蚀科学与防护技术, 2014, 26(2): 113-118.
SHEN Zhao, WU Lianlian, ZHANG Lefu, et al. Corrosion behavior of nickel base alloy 800H in high-temperature and high-pressured water[J]. Corrosion Science and Protection Technology, 2014, 26(2): 113-118.
[10] ROY A K, VIRUPAKSHA V. Performance of alloy 800H for high-temperature heat exchanger applications[J]. Materials Science and Engineering A, 2007, 452/453: 665-672.
[11] CONG S , LIU Z , DANG Y, et al. Effects of cold work on the corrosion behavior of alloy 800H exposed to aerated supercritical water[J]. Journal of Nuclear Materials, 2022, 559: 153408.
[12] 姚洪猛, 姚建涛, 孙雅萍, 等. 高温气冷堆二回路热力设备停用腐蚀控制技术研究[J]. 热力发电, 2019, 48(12): 8-12.
YAO Hongmeng, YAO Jiantao, SUN Yaping, et al. Lay-up corrosion control technology for secondary circuit thermodynamic equipment of high temperature gas-cooled reactor[J]. Thermal Power Generation, 2019, 48(12): 8-12.
[13] 压水堆核电厂水化学控制: NB/T 20436—2017[S]. 国家能源局, 2017: 4-6.
Water chemistry for pressurized water reactor nuclear power plant: NB/T 20436—2017[S]. National Energy Administration, 2017: 4-6.
[14] 唐丽英, 李江, 詹英杰, 等. 试验温度及热老化对Incoloy 800H合金冲击性能的影响[J]. 热力发电, 2021, 50(3): 49-55.
TANG Liying, LI Jiang, ZHAN Yingjie, et al. Effects of test temperature and thermal aging on impact performance of Incoloy 800H[J]. Thermal Power Generation, 2021, 50(3): 49-55.
[15] 李江, 詹英杰, 李季, 等. 国产Incoloy 800H合金在氦气中时效后力学性能及微观组织演化[J]. 热力发电, 2020, 49(11): 120-125.
LI Jiang, ZHAN Yingjie, LI Ji, et al. Mechanical properties and microstructure evolution of domestic Incoloy 800H during aging in helium[J]. Thermal Power Generation, 2020, 49(11): 120-125
[16] WANG Z, ZHAO H, CHEN L, et al. Evolution and its stability of M23(C, N)6 carbonitride in martensite ferritic steel during long-term thermal aging[J]. Materials Characterization, 2019, 152: 36-43.
[17] WU Y, YUAN S, YAN J, et al. Dissolution behaviour of laves phase in P92 high alloy steel in alkaline solutions[J]. Journal of the Electrochemical Society, 2021, 168(3): 031505.
[18] TERACHI T, YAMADA T, MIYAMOTO T, et al. Corrosion behavior of stainless steels in simulated PWR primary watereffect of chromium content in alloys and dissolved hydrogen[J]. Journal of Nuclear Science and Technology, 2008, 45(10): 975-984.
[19] LOBNIG R E, SCHMIDT H P, HENNESEN K, et al. Diffusion of cations in chromia layers grown on iron-base alloys[J]. Oxidation of Metals, 1992, 37(1): 81-93.
(责任编辑 邓玲惠)
相似文献/References:
[1]张瑞祥,王邦行,赵 峰,等.高温气冷堆二回路清洁方案[J].热力发电,2017,(6):130.
ZHANG Ruixiang,WANG Bangxing,ZHAO Feng,et al.Cleaning schemes for the secondary circuit in high temperature gas-cooled reactors[J].Thermal Power Generation,2017,(01):130.
[2]蔡宝玲,钱秋裕.高温气冷堆启停堆系统过程动态特性分析及控制策略验证[J].热力发电,2015,(12):62.
CAI Baoling,QIAN Qiuyu.Dynamic process characteristics analysis about startup/shutdown system of high temperature gas cooled reactor and verification of control strategy[J].Thermal Power Generation,2015,(01):62.
[3]吴厦成,钱秋裕,李晓伟,等.高温气冷堆主蒸汽管道汽锤现象安全分析[J].热力发电,2015,(12):126.
WU Xiacheng,QIAN Qiuyu,LI Xiaowei,et al.Safety analysis of HTGR main steam pipe under steam hammer conditions[J].Thermal Power Generation,2015,(01):126.
[4]祝欣慰,张桂英,邵杰,等.高温气冷堆主蒸汽管道双端断裂危害性分析方法[J].热力发电,2016,(12):67.
ZHU Xinwei,ZHANG Guiying,SHAO Jie,et al.Harmfulness analysis method for double ended break in main steam pipe of high temperature gas-cooled reactor[J].Thermal Power Generation,2016,(01):67.
[5]刘 锋,刘永兵,姚洪猛,等.高温气冷堆二回路催化柠檬酸清洗可行性研究[J].热力发电,2019,(06):79.[doi:10.19666/j.rlfd.201812215
]
LIU Feng,LIU Yongbing,YAO Hongmeng,et al.Feasibility analysis for chemical cleaning of the secondary circuit in high temperature gas-cooled reactors using catalytic citric acid[J].Thermal Power Generation,2019,(01):79.[doi:10.19666/j.rlfd.201812215
]
[6]张贵泉,姚洪猛,孙雅萍,等.高温高压水化学环境T22材质均匀腐蚀行为研究[J].热力发电,2020,49(9):93.[doi:10.19666/j.rlfd.201912259
]
ZHANG Guiquan,YAO Hongmeng,SUN Yaping,et al.General corrosion behavior of T22 material in high temperature and high pressure water chemical environment[J].Thermal Power Generation,2020,49(01):93.[doi:10.19666/j.rlfd.201912259
]
[7]李 江,詹英杰,李 季,等.国产Incoloy 800H合金在氦气中时效后力学性能及微观组织演化[J].热力发电,2020,49(11):120.[doi:10.19666/j.rlfd.202004119
]
LI Jiang,ZHAN Yingjie,LI Ji,et al.Mechanical properties and microstructure evolution of domestic Incoloy 800H during aging in helium[J].Thermal Power Generation,2020,49(01):120.[doi:10.19666/j.rlfd.202004119
]
[8]唐丽英,李 江,詹英杰,等.试验温度及热老化对Incoloy 800H合金冲击性能的影响[J].热力发电,2021,50(03):49.[doi:10.19666/j.rlfd.202005115
]
TANG Liying,LI Jiang,ZHAN Yingjie,et al.Effects of test temperature and thermal aging on impact performance of Incoloy 800H[J].Thermal Power Generation,2021,50(01):49.[doi:10.19666/j.rlfd.202005115
]
[9]蔡宝玲,马晓珑,孟 强,等.高温气冷堆核电机组一次调频控制策略研究[J].热力发电,2022,51(02):71.[doi:10.19666/j.rlfd.202109227
]
CAI Baoling,MA Xiaolong,MENG Qiang,et al.Study on control strategy of primary frequency modulation of high temperature gas cooled reactor nuclear power unit[J].Thermal Power Generation,2022,51(01):71.[doi:10.19666/j.rlfd.202109227
]
[10]刘福广,杨二娟,李 勇,等.核电蒸汽发生器堵管技术研究进展及其在高温气冷堆的应用前景[J].热力发电,2022,51(06):74.[doi:10.19666/j.rlfd.202201013
]
LIU Fuguang,YANG Erjuan,LI Yong,et al.Research progress on tube plugging technology of nuclear power steam generator and its applicability for high temperature gas-cooled reactor[J].Thermal Power Generation,2022,51(01):74.[doi:10.19666/j.rlfd.202201013
]
备注/Memo
李季(1985),女,博士,高级工程师,主要研究方向为火电、核电用金属材料性能,liji@tpri.com.cn。