LI Songshan,TANG Wen,NING Xinyu,et al.Optimization of main steam temperature deviation on both sides of supercritical 600 MW opposed firing boiler based on hydrodynamic model of flow network method[J].Thermal Power Generation,2023,52(01):74-82.[doi:10.19666/j.rlfd.202205088]
基于流动网络法水动力模型优化超临界600 MW对冲锅炉两侧主蒸汽温度偏差研究
- Title:
- Optimization of main steam temperature deviation on both sides of supercritical 600 MW opposed firing boiler based on hydrodynamic model of flow network method
- 摘要:
- 以某超临界600 MW机组对冲燃烧锅炉为研究对象,通过对其进行水动力建模,分析验证了主蒸汽两侧温度偏差规律,并从锅炉水侧提出优化主蒸汽温度偏差的技术方案。根据提出的蒸汽温度优化方案调整后,50%、75%和100% BRL负荷下锅炉出口两侧主蒸汽温度偏差分别缩小了44.6%、95.8%和28.0%。该方案可实现机组的安全、经济运行,并为同类型机组主蒸汽温度偏差治理提供理论依据与改造参考。
参考文献/References:
[1] 吴鹏举, 朱超, 万李, 等. 超临界机组锅炉20%负荷深度调峰水动力实炉试验研究[J]. 热力发电, 2021, 50(4): 59-66.
WU Pengju, ZHU Chao, WAN Li, et al. Actual furnace test research on hydrodynamics of a supercritical boiler at 20% deep peak load[J]. Thermal Power Generation, 2021, 50(4): 59-66.
[2] 杨英明, 孙建东, 李全生. 我国能源结构优化研究现状及展望[J]. 煤炭工程, 2019, 51(2): 149-153.
YANG Yingming, SUN Jiandong, LI Quansheng. Status and prospect of research on China’s energy structure optimization[J]. Coal Engineering, 2019, 51(2): 149-153.
[3] ZHOU J, ZHU M, XU K, et al. Key issues and innovative double-tangential circular boiler configurations for the 1 000?MW coal-fired supercritical carbon dioxide power plant[J]. Energy, 2020: 117474.
[4] 翟小俊, 宋海峰, 赵耀兴. 试论350 MW超临界循环流化床锅炉技术[J]. 山东工业技术, 2018(19): 170.
ZHAI Xiaojun, SONG Haifeng, ZHAO Yaoxing. Discussion on 350 MW supercritical circulating fluidized bed boiler technology[J]. Journal of Shandong Industrial Technology, 2018(19): 170.
[5] ZHANG T, WEN J T, PELES Y, et al. Two-phase refrigerant flow instability analysis and active control in transient electronics cooling systems[J]. International Journal of Multiphase Flow, 2011, 37(1): 84-97.
[6] 滕敏华, 胡卿, 万李, 等. 1 000 MW宽负荷超超临界机组锅炉水动力特性计算及分析[J]. 热力发电, 2019, 48(4): 60-67.
TENG Minhua, HU Qing, WAN Li, et al. Calculation and analysis on hydrodynamic characteristics of an ultra-supercritical unit boiler with 1 000 MW broad regulation load[J]. Thermal Power Generation, 2019, 48(4): 60-67.
[7] 沈利, 徐书德, 关键, 等. 超临界大容量火电机组深 度调峰对燃煤锅炉的影响[J]. 发电设备, 2016, 30(1): 21-23.
SHEN Li, XU Shude, GUAN Jian, et al. Effects of deep participation in peak regulation on the coal-fired boiler of a supercritical high-capacity thermal power unit[J]. Power Equipment, 2016, 30(1): 21-23.
[8] 董建聪, 张忠孝, 范浩杰, 等. 超超临界二次再热机组锅炉燃烧与水动力耦合计算方法研究[J]. 热力发电, 2017, 46(8): 30-35.
DONG Jiancong, ZHANG Zhongxiao, FAN Haojie, et al. Research on coupling calculation method of combustion and hydrodynamics for water walls in ultra-supercritical double-reheat boilers[J]. Thermal Power Generation, 2017, 46(8): 30-35.
[9] 陆启亮, 杨冬, 沈艳荣, 等. 超临界定压运行T型锅炉改造方案的水动力安全分析[J]. 动力工程学报, 2014, 34(7): 501-506.
LU Qiliang, YANG Dong, SHEN Yanrong, et al. Hydrodynamic safety analysis for retrofit of a supercritical T-shaped constant-pressure operating boiler[J]. Journal of Chinese Society of Power Engineering, 2014, 34(7): 501-506.
[10] 万李, 朱超, 吴鹏举, 等. 700 ℃超超临界对冲燃烧螺旋管圈锅炉水动力计算与壁温安全性分析[J]. 动力工程学报, 2020, 40(12): 949-957.
WAN Li, ZHU Chao, WU Pengju, et al. Hydrodynamic calculation and wall temperature safety analysis of a 700 ℃ ultra supercritical opposed firing boiler with spiral tubes[J]. Journal of Chinese Society of Power Engineering, 2020, 40(12): 949-957.
[11] 胡庆伟, 苏胜, 向军, 等. 超超临界1 000 MW机组双切圆锅炉主再热汽温提升方法研究[J]. 热力发电, 2020, 49(3): 107-112.
HU Qingwei, SU Sheng, XIANG Jun, et al. Research on main and reheat steam temperature lifting method for ultrasupercritical 1 000 MW unit double-tangential circular boiler[J]. Thermal Power Generation, 2020, 49(3): 107-112.
[12] 朱萌, 周敬, 陈磊, 等. 660 MW超临界二氧化碳燃煤机组锅炉设计及经济性分析[J]. 热力发电, 2020, 49(10): 136-143.
ZHU Meng, ZHOU Jing, CHEN Lei, et al. Boiler design and economic analysis for 660 MW supercritical carbon dioxidecoal-fired unit[J]. Thermal Power Generation, 2020, 49(10): 136-143.
[13] 闫仕军. 防止超超临界锅炉受热面超温的技术措施分析[J]. 江苏电机工程, 2014, 33(3): 75-77.
YAN Shijun. Measures for preventing overheating of high temperature heating surfaces in boilers of ultra-supercritical power plants[J]. Jiangsu Electrical Engineering, 2014, 33(3): 75-77.
[14] 杨冬, 潘杰. 超(超)临界锅炉水动力特性-试验研 究与理论计算[M]. 北京: 中国电力出版社, 2017: 172-185.
YANG Dong, PAN Jie. Experimental study and theoretical calculation on hydrodynamic characteristics of (ultra) supercritical boiler[M]. Beijing: China Electric Power Press, 2017: 172-185.
[15] 电站锅炉水动力计算方法: JB/Z 201—1983[S]. 上海: 上海发电设备成套设计研究所, 1983: 465.
Hydrodynamic calculation method for power station boiler: JB/Z 201—1983[S]. Shanghai: Shanghai Power Equipment Research Institute, 1983: 465.
(责任编辑 邓玲惠)
相似文献/References:
[1]李芳富.国产化超临界机组锅炉选材特点[J].热力发电,2006,(04):0.
[2]谢 江.浅析600MW机组超临界压力直流锅炉水冷壁的系统特性对运行操作的要求[J].热力发电,2004,(08):0.
[3]张志正,周云龙,石久胜,等.SG-1025-2直流锅炉水冷壁流量在线分配研究与实践[J].热力发电,2003,(11):0.
[4]朱玉琴,张立希,曹子栋.冲击热负荷作用下垂直自然循环水动力特性的试验研究[J].热力发电,2002,(01):0.
[5]王红雨,张俊伟,李学忠,等.超临界锅炉不熄火降压法蒸汽吹洗[J].热力发电,2005,(12):0.
[6]陆 莹,王达峰.600 MW机组超临界锅炉燃烧调整试验[J].热力发电,2007,(07):29.
[7]宋大勇,狄万丰,张家维,等.HG1900/25.4HM2型锅炉排烟温度高原因分析及解决措施[J].热力发电,2013,(07):109.
SONG Dayong,DI Wanfeng,ZHANG Jiawei,et al.High exhaust temperature of an HG1900/25.4HM2 boiler:cause analysis and countermeasures[J].Thermal Power Generation,2013,(01):109.
[8]周云龙,杨宁.600 MW锅炉热态下水冷壁流量分配特性研究[J].热力发电,2013,(12):34.
ZHOU Yunlong,YANG Ning.Flow distribution characteristics of water wall in a 600 MW unit boiler in thermal state[J].Thermal Power Generation,2013,(01):34.
[9]董建聪,张忠孝,范浩杰,等.超超临界二次再热机组锅炉燃烧与水动力耦合计算方法研究[J].热力发电,2017,(8):30.
DONG Jiancong,ZHANG Zhongxiao,FAN Haojie,et al.Research on coupling calculation method of combustion and hydrodynamics for water walls in ultra-supercritical double-reheat boilers[J].Thermal Power Generation,2017,(01):30.
[10]张一帆,梁法光,杨 玉,等.超超临界二次再热机组锅炉烟气再循环对锅炉水动力和壁温分布影响[J].热力发电,2017,(8):42.
ZHANG Yifan,LIANG Faguang,YANG Yu,et al.Influences of flue gas recirculation on thermal hydrodynamic and water wall temperature distribution in an ultra-supercritical double-reheat boiler[J].Thermal Power Generation,2017,(01):42.
备注/Memo
李松山(1983),男,工程师,主要研究方向为锅炉燃烧、主辅设备检修与维护,563525031@qq.com。