LI Yunfei,CHEN Heng,XU Gang,et al.Comprehensive performance analysis of solid waste power generation system coupled with anaerobic fermentation and incineration[J].Thermal Power Generation,2023,52(01):56-65.[doi:10.19666/j.rlfd.20220615]
厌氧发酵与焚烧耦合的固体废物发电系统综合性能分析
- Title:
- Comprehensive performance analysis of solid waste power generation system coupled with anaerobic fermentation and incineration
- 摘要:
- 提出了一种高效的厌氧发酵与焚烧耦合的固体废物(固废)发电综合系统,采用固废厌氧发酵产生沼气,沼气进入沼气燃烧器燃烧产生高温烟气,烟气通过机组中的加热器和空气预热器对汽水系统和一、二次风进行加热;在保证进入锅炉中固废焚烧产生的热量不变的情况下,增加了进入汽轮机中做功的能量,从而提高了整体机组的发电效率;同时根据热力学第一定律和热力学第二定律分析机组发电效率和?效率提升的原因。结果表明:与案例机组相比,所提出加入沼气燃烧高温烟气系统可增加8.69 MW净发电量;此外,新系统的发电效率提升了3.56百分点,发电?效率提升了9.74百分点。经济性分析表明:所提出的耦合系统增设了厌氧发酵沼气燃烧系统,动态回收周期为3.78年,经济优势明显。
参考文献/References:
[1] ZHANG J, QIN Q, LI G, et al. Sustainable municipal waste management strategies through life cycle assessment method: a review[J]. Journal of Environmental Management, 2021, 287: 112-138.
[2] KUMAR A, SAMADDER S R. A review on technological options of waste to energy for effective management of municipal solid waste[J]. Waste Management, 2017, 69: 407-422.
[3] OSTREM K M, MILLRATH K, THEMELIS N J, et al. Combining anaerobic digestion and waste-to-energy[C]//Proceedings of the Annual North American Waste to Energy Conference (ANWTEC12), Savannah, US, 2004: 265-271.
[4] JIN C, SUN S, YANG D, et al. Anaerobic digestion: an alternative resource treatment option for food waste in China[J]. Science of the Total Environment, 2021, 779: 146-157.
[5] DAL MAGRO F, XU H, NARDIN G, et al. Application of high temperature phase change materials for improved efficiency in waste-to-energy plants[J]. Waste Management, 2018, 73: 322-331.
[6] BOGALE W, VIGAN? F. A preliminary comparative performance evaluation of highly efficient waste-to-energy plants[J]. Energy Procedia, 2014, 45: 1315-1324.
[7] MENDECKA B, LOMBARDI L, GADYSZ P, et al. Exergo-ecological assessment of waste to energy plants supported by solar energy[J]. Energies, 2018, 11(4): 773-783.
[8] POMA C, VERDA V, CONSONNI S. Design and performance evaluation of a waste-to-energy plant integrated with a combined cycle[J]. Energy, 2010, 35(2): 786-793.
[9] CONSONNI S, SILVA P. Off-design performance of integrated waste-to-energy, combined cycle plants[J]. Applied Thermal Engineering, 2007, 27(4): 712-721.
[10] CHEN H, ZHANG M, WU Y, et al. Design and performance evaluation of a new waste incineration power system integrated with a supercritical CO2 power cycle and a coal-fired power plant[J]. Energy Conversion and Management, 2020, 210: 112-115.
[11] CHEN H, ZHANG M, XUE K, et al. An innovative waste-to-energy system integrated with a coal-fired power plant[J]. Energy, 2020, 194: 116893.
[12] LOMBARDI L, CARNEVALE E, CORTI A. A review of technologies and performances of thermal treatment systems for energy recovery from waste[J]. Waste Management, 2015, 37: 26-44.
[13] 李东雄, 徐鸿恩, 牛拥军, 等. 300 MW节能型循环流化床锅炉SO3生成和排放试验研究[J]. 动力工程学报, 2020, 40(6): 447-453.
LI Dongxiong, XU Hongen, NIU Yongjun, et al. Experimental study on SO3 generation and emission of a 300 MW energy saving CFB boiler[J]. Journal of Chinese Society of Power Engineering, 2020, 40(6): 447-453.
[14] 赵巍, 汪琦, 刘海啸, 等. 并流与逆流竖炉垃圾焚烧工艺计算及对比分析[J]. 动力工程学报, 2012, 32(7): 562-568.
ZHAO Wei, WANG Qi, LIU Haixiao, et al. Technical calculation and analysis of MSW incineration with co-current and counter-current shaft furnace[J]. Journal of Chinese Society of Power Engineering, 2012, 32(7): 562-568.
[15] IBRAHIM T K, MOHAMMED M K, AWAD O I, et al. A comprehensive review on the exergy analysis of combined cycle power plants[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 835-850.
[16] LAMIDI R O, JIANG L, WANG Y D, et al. Techno-economic analysis of a biogas driven poly-generation system for postharvest loss reduction in a sub-saharan rural community[J]. Energy Conversion and Management, 2019, 196: 591-604.
[17] ZHAO X, JIANG G, LI A, et al. Economic analysis of waste-to-energy industry in China[J]. Waste Management, 2016, 48: 604-618.
[18] KOZ?OWSKI K, PIETRZYKOWSKI M, CZEKA?A W, et al. Energetic and economic analysis of biogas plant with using the dairy industry waste[J]. Energy, 2019, 183: 1023-1031.
[19] 曾祥耙. 垃圾焚烧发电项目成本分析[J]. 环境卫生工程, 2014, 22(3): 57-60.
ZENG Xiangba. Cost analysis of waste incineration-power generation projects[J]. Environmental Sanitation Engineering, 2014, 22(3): 57-60.
(责任编辑 刘永强)
相似文献/References:
[1]马志刚,吴树志,白云峰.垃圾与煤混燃技术的国内研究进展[J].热力发电,2009,(04):0.
[2]李建新,王永川,张美琴,等.国内城市生活垃圾特性及其处理技术研究[J].热力发电,2006,(01):0.
[3]李延吉,李润东,李爱民,等.废弃物与煤混合气化产气特性的试验研究[J].热力发电,2005,(10):0.
[4]邱 天,张衍国,吴占松.城市污水污泥燃烧特性试验研究[J].热力发电,2003,(03):0.
[5]王彬全,麻红磊,金余其,等.污泥干化焚烧过程中的能量平衡及经济性分析[J].热力发电,2010,(07):14.
WANG Binquan,MA Honglei,JIN Yuqi,et al.ENERGY BALANCE IN DRYING INCINERATION PROCESS OF SLUDGE AND ECONOMIC EFFICIENCY ANALYSIS THEREOF[J].Thermal Power Generation,2010,(01):14.
[6]高宁博,李爱民,李延吉.有机废弃物气化焚烧的NOx和SO2排放试验研究[J].热力发电,2008,(08):21.
[7]黄明星,刘 丹.城市垃圾与生物质混烧对焚烧厂运行的影响[J].热力发电,2011,(06):103.
HUANG Mingxing,LIU Dan.INFLUENCE OF MSW/BIOMASS COFIRING UPON OPERATION OF INCINERATION PLANT[J].Thermal Power Generation,2011,(01):103.
[8]陈明周,张瑞峰,吕永红,等.放射性固体废物玻璃固化技术综述[J].热力发电,2012,(03):1.
CHEN Mingzhou,ZHANG Ruifeng,LV Yonghong,et al.A SAMMRY OF GLASSSOLIDIFICATION TECHNOLOGY FOR RADIOACTIVE SOLID WASTAGES[J].Thermal Power Generation,2012,(01):1.
[9]许杭俊,黄立维.利用城市垃圾焚烧飞灰制备生态水泥的研究[J].热力发电,2013,(02):41.
XU Hangjun,HUANG Liwei.Ecocement preparation using municipal solid waste incineration fly ash[J].Thermal Power Generation,2013,(01):41.
[10]李帅英,武宝会,王一坤,等.燃煤机组污泥掺烧项目工程设计[J].热力发电,2020,49(04):150.[doi:10.19666/j.rlfd.201907152
]
LI Shuaiying,WU Baohui,WANG Yikun,et al.Engineering design of sludge blending combustion project for coal-fired units[J].Thermal Power Generation,2020,49(01):150.[doi:10.19666/j.rlfd.201907152
]
备注/Memo
李云飞(1998),男,硕士研究生,主要研究方向为多能互补系统集成技术,leeeyf@ncepu.edu.cn。