[1]朱开轩,周 托,王随林,等.内燃机余热与燃煤机组复合热力系统的利用特性研究[J].热力发电,2023,52(01):45-55.[doi:10.19666/j.rlfd.202204079]
 ZHU Kaixuan,ZHOU Tuo,WANG Suilin,et al.Study on utilization characteristics of compound thermal system of waste heat of internal combustion engine and coal-fired unit[J].Thermal Power Generation,2023,52(01):45-55.[doi:10.19666/j.rlfd.202204079]
点击复制

内燃机余热与燃煤机组复合热力系统的利用特性研究

参考文献/References:

[1] 韩芳. 我国可再生能源发展现状和前景展望[J]. 可再生能源, 2010, 28(4): 137-140.
HAN Fang. Development status and prospect of renewable energy in China[J]. Renewable Energy Resources, 2010, 28(4): 137-140.
[2] 史立山. 中国能源现状分析和可再生能源发展规划[J].可再生能源, 2004(5): 17-21.
SHI Lishan. Analysis of present energy condition and renewable energy development plan in China[J]. Renewable Energy Resources, 2004(5): 17-21.
[3] 方程, 许彦斌, 张凯琳, 等. 可再生能源消纳责任权 重制下风电多阶段消纳策略[J/OL]. 华北电力大学 学报(自然科学版): 1-13. (2021-11-16)[2022-04-25]. https://kns. cnki.net/kcms/detail/13.1212.TM.2021 1116.13 57.002.html.
FANG Cheng, XU Yanbin, ZHANG Kailin, et al. Multi-stage wind power consumption strategy under the renewable portfolio standard[J/OL]. Journal of North China Eleatic Power University (Natural Science Edition): 1-13. (2021-11-16)[2022-04-25]. https://kns.cnki.net/ kcms/detail/ 13.1212.TM.2021 1116.1357.002.html.
[4] 古雨. 中国可再生能源发展趋势预测及应用前景分 析[D]. 北京: 华北电力大学, 2021: 3.
GU Yu. Development trend forecast and application prospect analysis of renewable energy in China[D]. Beijng: North China Electric Power University, 2021: 3.
[5] 赵良, 白建华, 辛颂旭, 等. 中国可再生能源发展路径研究[J]. 中国电力, 2016, 49(1): 178-184.
ZHAO Liang, BAI Jianhua, XIN Songxu, et al. Study on development path of renewable energy in China[J]. Electric Power, 2016, 49(1): 178-184.
[6] 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705.
BAI Jianhua, XIN Songxu, LIU Jun, et al. Roadmap of realizing the high penetration renewable energy in China[J]. Proceedings of the CSEE, 2015, 35(14): 3699-3705.
[7] 潘尔生, 田雪沁, 徐彤, 等. 火电灵活性改造的现状、关键问题与发展前景[J]. 电力建设, 2020, 41(9): 58-68. PAN Ersheng, TIAN Xueqin, XU Tong, et al. Status, critical problems and prospects of flexibility retrofit of thermal power in China[J]. Electric Power Construction, 2020, 41(9): 58-68.
[8] 牟春华, 居文平, 黄嘉驷, 等. 火电机组灵活性运行技术综述与展望[J]. 热力发电, 2018, 47(5): 1-7.
MU Chunhua, JU Wenping, HUANG Jiasi, et al. Review and prospect of technologies of enhancing the flexibility of thermal power units[J]. Thermal Power Generation, 2018, 47(5): 1-7.
[9] 侯玉婷, 李晓博, 刘畅, 等. 火电机组灵活性改造形势及技术应用[J]. 热力发电, 2018, 47(5): 8-13.
HOU Yuting, LI Xiaobo, LIU Chang, et al. Flexible modification situation and technical application of thermal power units[J]. Thermal Power Generation, 2018, 47(5): 8-13.
[10] 刘蜀卿. 内燃机和燃气轮机在发电领域的比较[J]. 内燃机, 2002(4) : 24-25.
LIU Shuqing. Comparison of internal combustion engine with gas turbine in the field of power generation[J]. Internal Combustion Engines, 2002(4): 24-25.
[11] 郝小礼, 张国强. 建筑冷热电联产系统综述[J]. 煤气与热力, 2005(5): 67-73.
HE Xiaoli, ZHANG Guoqiang. Summarization on building combined cooling, heating and power system[J]. Gas & Heat, 2005(5): 67-73.
[12] 苏万华, 张众杰, 刘瑞林, 等. 车用内燃机技术发展趋势[J]. 中国工程科学, 2018, 20(1): 97-103.
SU Wanhua, ZHANG Zhongjie, LIU Ruilin, et al. Development trend for technology of vehicle internal combustion engine[J]. Strategic Study of CAE, 2018, 20(1): 97-103.
[13] 常丽, 秦渊. 内燃机余热利用的措施探讨[J]. 能源与环境, 2015(5): 32-33.
CHANG Li, QIN Yuan. Discussion on measures of utilization of waste heat of internal combustion engine[J]. Energy and Environment, 2015(5): 32-33.
[14] 张瑞原, 苏文, 周乃君. 基于新型S-CO2动力循环的内燃机余热回收[J]. 工程热物理学报, 2022, 43(1): 27-34.
ZHANG Ruiyuan, SU Wen, ZHOU Naijun. Waste heat recovery from internal combustion engines based on a novel S-CO2 power cycle[J]. Journal of Engineering Thermophysics, 2022, 43(1): 27-34.
[15] 张昌远, 徐斌, 毛静雯, 等. 内燃机余热回收有机朗肯循环系统研究综述[J]. 低温与超导, 2021, 49(7): 84-90.
ZHANG Changyuan, XU Bin, MAO Jingwen, et al. Review of organic rankine cycle systems for waste heat recovery of internal combustion engine[J]. Cryogenics & Superconductivity, 2021, 49(7): 84-90.
[16] 谢天, 李杨, 周元祥, 等. 一种基于烟气中SO2浓度计算锅炉烟气酸露点的方法[J]. 热力发电, 2013, 42(12): 118-121.
XIE Tian, LI Yang, ZHOU Yuanxiang, et al. A SO2 concentration based calculation method for acid dew point of flue gas[J]. Thermal Power Generation, 2013, 42(12): 118-121.
[17] 姜树栋. 利用烟气余热加热凝结水方案[J]. 综合智慧能源, 2016, 38(9): 59-62.
JIANG Shudong. Scheme of heating condensation water using waste heat of flue gas[J]. Integrated Intelligent Energy, 2016, 38(9): 59-62.
[18] 赵恩婵, 张方炜, 赵永红. 火力发电厂烟气余热利用系统的研究设计[J]. 热力发电, 2008, 37(10): 66-70. ZHAO Enchan, ZHANG Fangwei, ZHAO Yonghong. Study on and design of residual heal utilization system for flue gas in thermal power plants[J]. Thermal Power Generation, 2008, 37(10): 66-70.
[19] 徐民, 赵明, 梁俊宇, 等. 火电锅炉烟气余热利用研 究[J]. 热能动力工程, 2015, 30(6): 880-884. XU Min, ZHAO Ming, LIANG Junyu, et al. Study of flue gas waste heat utilization of a utility boiler[J]. Journal of Engineering for Thermal Energy and Power, 2015, 30(6): 880-884.
[20] 孙杰, 伊金亮, 白炎武, 等. 一种锅炉烟气余热利用的高效循环系统分析[J]. 热力发电, 2013, 42(8): 22-23. SUN Jie, YIN Jinliang, BAI Yanwu, et al. A high effective circulating system for exhaust heat utilization[J]. Thermal Power Generation, 2013, 42(8): 22-23.
[21] 刘艳峰, 靳璐, 周勇, 等. 分区串并联地埋管群换热 效果影响因素分析[J]. 太阳能学报, 2021, 42(11): 421-428.
LIU Yanfeng, JIN Lu, ZHOU Yong, et al. Analysis of influencing factors on heat transfer effect of subarea series-parallel underground pipe groups[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 421-428.
[22] 杨富鑫, 谭厚章, 张俊杰, 等. 1 000 MW机组锅炉余热利用方案对比[J]. 洁净煤技术, 2017, 23(6): 124-128. YANG Fuxin, TAN Houzhang, ZHANG Junjie, et al. Comparison of different systems for waste heat recovery from flue gas in a 1 000 MW power plant[J]. Clean Coal Technology, 2017, 23(6): 124-128.
[23] 李阳海, 张才稳, 王广庭, 等. 1 000 MW火电机组水击现象分析及预防处置措施[J]. 汽轮机技术, 2015, 57(1): 75-77.
LI Yanghai, ZHANG Caiwen, WANG Guangting, et al. Water hammer analysis, prevention and handle in 1 000 MW coal combustion unit[J]. Turbine Technology, 2015, 57(1): 75-77.
[24] 王全胜, 李树权, 冯永新. 发电厂水击现象探讨[J]. 四川电力技术, 2004(1): 45-47.
WANG Quansheng, LI Shuquan, FENG Yongxin. Phenomenon discussion of water hammer in hydroelectric power plant[J]. Sichuan Electric Power Technology, 2004(1): 45-47.
[25] 万昌财, 孙海军, 薛仁雨. 水击现象原因分析及防范措施探讨[J]. 石化技术, 2019, 26(6): 149-150.
WAN Changcai, SUN Haijun, XUE Renyu. Cause analysis and preventive measures of water strike phenomenon[J]. Petrochemical Industry Technology, 2019, 26(6): 149-150.
(责任编辑 邓玲惠)

相似文献/References:

[1]匡国强,徐党旗.选择性催化还原(SCR)脱硝装置对锅炉结构的影响[J].热力发电,2006,(10):0.
[2]林海波,游春桃,周 波,等.超超临界2×1 036 MW机组SCR脱硝装置氨蒸发器的设计[J].热力发电,2011,(03):65.
 LIN Haibo,YOU Chuntao,ZHOU Bo,et al.DESIGN OF AMMONIA EVAPORATOR FOR SCR DENITRIFICATION SYSTEM OF ULTRA[CDF*2]SUPERCRITICAL 2×1 036 MW UNITS[J].Thermal Power Generation,2011,(01):65.
[3]姚明宇,张广才,聂剑平.高效燃煤机组关键技术研究进展[J].热力发电,2012,(08):1.
 YAO Mingyu,ZHANG Guangcai,NIE Jianping.KEY TECHNOLOGY OF ADVANCED HIGHEFFICIENCY COALFIRED POWER STATION[J].Thermal Power Generation,2012,(01):1.
[4]丁剑鹰.单元机组停机不停炉技术的应用[J].热力发电,2005,(08):0.
[5]李卫华.提高燃煤机组调频调峰性能的综合控制技术[J].热力发电,2014,(11):6.
 LI Weihua.Integrated control technology for improving PFC and AGC performance of coal-fired units:research and application[J].Thermal Power Generation,2014,(01):6.
[6]薛云灿,沙伟,蔡昌春,等.主蒸汽参数对煤耗率影响的计算模型比较[J].热力发电,2015,(03):76.
 XUE Yuncan,SHA Wei,CAI Changchun,et al.Influence of main steam parameters on coal consumption rates:calculation model comparison[J].Thermal Power Generation,2015,(01):76.
[7]章斐然,周克毅,徐奇,等.燃煤机组低负荷运行SCR烟气脱硝系统应对措施[J].热力发电,2016,(07):78.
 ZHANG Feiran,ZHOU Keyi,XU Qi,et al.Countermeasures for SCR denitration system of coal-fired unit during low-load operation[J].Thermal Power Generation,2016,(01):78.
[8]宋景慧,刘桂才,廖艳芬,等.燃煤机组锅炉低温烟气余热利用节能效益分析[J].热力发电,2015,(09):57.
 SONG Jinghui,LIU Guicai,LIAO Yanfen,et al.Energy-saving analysis for heat recovery from low-temperature flue gas in coal-fired units[J].Thermal Power Generation,2015,(01):57.
[9]崔立明,孟丽霞,袁 红.超低排放改造及其对供电成本的影响[J].热力发电,2017,(6):119.
 CUI Liming,MENG Lixia,YUAN Hong.Ultra-low emission reform and its influence on the plant’s electricity supply cost[J].Thermal Power Generation,2017,(01):119.
[10]杨勇平,吴殿法,王宁玲.基于组合权重优劣解距离法的火电机组性能综合评价[J].热力发电,2016,(02):10.
 YANG Yongping,WU Dianfa,WANG Ningling.Comprehensive evaluation for large scale coal-fired power units based on combined weight and TOPSIS method[J].Thermal Power Generation,2016,(01):10.

备注/Memo

朱开轩(1998),男,硕士研究生,主要研究方向为内燃机与燃煤机组热耦合,zkx199819@163.com。

更新日期/Last Update: 2023-01-15