[1]洪 烽,梁 璐,逄亚蕾,等.基于自适应协同下垂的飞轮储能联合火电机组一次调频控制策略[J].热力发电,2023,52(01):36-44.[doi:10.19666/j.rlfd.202206100]
 HONG Feng,LIANG Lu,PANG Yalei,et al.Primary frequency regulation of flywheel energy storage combined thermal power unit based on adaptive coordinated droop control[J].Thermal Power Generation,2023,52(01):36-44.[doi:10.19666/j.rlfd.202206100]
点击复制

基于自适应协同下垂的飞轮储能联合火电机组一次调频控制策略

参考文献/References:

[1] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6258.
LI Hui, LIU Dong, YAO Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6258.
[2] 习近平. 继往开来, 开启全球应对气候变化新征程: 在气候雄心峰会上的讲话[N]. 中华人民共和国国务院公报, 2020(35): 7.
XI Jinping. Building on past achievements and launchinga new journey for global climate actions: statement at the climate ambition summit[N]. Gazette of the State Council of the People’s Republic of China, 2020(35): 7.
[3] 孙华东, 王一鸣, 高磊, 等. 高比例电力电子电力系统稳定性的统一性判据研究(一): 场站稳定判据[J]. 中国电机工程学报, 2022, 42(5): 1713-1723.
SUN Huadong, WANG Yiming, GAO Lei, et al. Research on unification stability criterion for the power electronics dominated power system (Ⅰ): criterion of the power-electronic interfaced plant[J]. Proceedings of the CSEE, 2022, 42(5): 1713-1723.
[4] 李玲, 刘鑫屏. 新能源大规模并网条件下火电机组深度调峰控制策略优化[J]. 中国电力, 2020, 53(1): 155-161.
LI Ling, LIU Xinping. Control strategy optimization for thermal power unit adapted to deep peak shaving for large-scale new energy source integration[J]. Electric Power, 2020, 53(1): 155-161.
[5] 张顺, 闫培飞, 姚洪宇, 等. 亚临界汽包炉深度调峰安全性评估及控制优化技术[J]. 中国电力, 2020, 53(7): 203-210.
ZHANG Shun, YAN Peifei, YAO Hongyu, et al. Safety evaluation and control optimization technology for in-depth peak-shaving of subcritical drum boiler[J]. Electric Power, 2020, 53(7): 203-210.
[6] 隋云任, 梁双印, 黄登超, 等. 飞轮储能辅助燃煤机组调频动态过程仿真研究[J]. 中国电机工程学报, 2020, 40(8): 2597-2606.
SUI Yunren, LIANG Shuangyin, HUANG Dengchao, et al. Simulation study on frequency modulation process of coal burning plants with auxiliary of flywheel energy storage[J]. Proceedings of the CSEE, 2020, 40(8): 2597-2606.
[7] 肖春梅. 电储能提升火电机组调频性能研究[J]. 热力发电, 2021, 50(6): 98-105.
XIAO Chunmei. Research on using electric energy storage to improve frequency regulation performance of thermal power units[J]. Thermal Power Generation, 2021, 50(6): 98-105.
[8] 邓霞, 孙威, 肖海伟. 储能电池参与一次调频的综合控制方法[J]. 高电压技术, 2018, 44(4): 1157-1165.
DENG Xia, SUN Wei, XIAO Haiwei. Integrated control strategy of battery energy storage system in primary frequency regulation[J]. High Voltage Engineering, 2018, 44(4): 1157-1165.
[9] 李欣然, 崔曦文, 黄际元, 等. 电池储能电源参与电网一次调频的自适应控制策略[J]. 电工技术学报, 2019, 34(18): 3897-3908.
LI Xinran, CUI Xiwen, HUANG Jiyuan, et al. The selfadaption control strategy of energy storage batteries participating in the primary frequency regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3897-3908.
[10] PANDZIC H, BOBANAC V. An accurate charging model of battery energy storage[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1416-1426.
[11] 王建业. 大功率飞轮储能系统转子设计与充放电控制研究[D]. 北京: 华北电力大学, 2019: 1.
WANG Jianye. Research on motor design and charge and discharge control of high power flywheel energy storage system[D]. Beijing: North China Electric Power University, 2019: 1.
[12] 张兴, 阮鹏, 张柳丽, 等. 飞轮储能在华中区域火电调频中的应用分析[J]. 储能科学与技术, 2021, 10(5): 1694-1700.
ZHANG Xing, RUAN Peng, ZHANG Liuli, et al. Application analysis of flywheel energy storage in thermal power frequency modulation in central China[J]. Energy Storage Science and Technology, 2021, 10(5): 1694-1700.
[13] 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析[J]. 储能科学与技术, 2021, 10(5): 1679-1686.
HE Linxuan, LI Wenyan. Simulation analysis of primary frequency modulation process of thermal power units with auxiliary of flywheel energy storage[J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686.
[14] 罗耀东, 田立军, 王垚, 等. 飞轮储能参与电网一次调频协调控制策略与容量优化配置[J]. 电力系统自动化, 2022, 46(9): 71-82.
LUO Yaodong, TIAN Lijun, WANG Yao, et al. Coordinated control strategy and capacity optimization of primary frequency regulation for flywheel energy storage system[J]. Aotomation of Electric Power Systems, 2022, 46(9): 71-82.
[15] PERALTA D, CANIZARES C, BHATTACHARYA K. Practical modeling of flywheel energy storage for primary frequency control in power grids[C]. 2018 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2018.
[16] 吴天宇. 基于模糊控制理论的两区域互联电网AGC的研究[D]. 长沙: 长沙理工大学, 2016: 1.
WU Tianyu. Research on AGC of two area interconnected power grid based on fuzzy control theory[D]. Changsha: Changsha University of Science & Technology, 2016: 1.
[17] 杜鸣. 火电机组灵活运行下的负荷频率控制优化研 究[D]. 北京: 华北电力大学, 2021: 1.
DU Ming. Research on load frequency control optimi-zation ofthermal power unit under flexible operation[D]. Beijing: North China Electric Power University, 2021: 1.
[18] 邓拓宇, 田亮, 刘吉臻. 供热机组负荷指令多尺度前馈协调控制方案[J]. 热力发电, 2016, 45(3): 48-53.
DENG Tuoyu, TIAN Liang, LIU Jizhen. Multi-scale feedforward corrdinated control scheme for load command of heat supply units[J]. Thermal Power Generation, 2016, 45(3): 48-53.
[19] 蒋华婷. 储能系统参与自动发电控制的控制策略和容量配置[D]. 北京: 华北电力大学, 2019: 1.
JIANG Huating. The control strategy and capacity configuration of energy storage system participating in automatic generation control[D]. Beijing: North China Electric Power University, 2019: 1.
[20] 李军徽, 侯涛, 穆钢, 等. 基于权重因子和荷电状态恢复的储能系统参与一次调频策略[J]. 电力系统自动化, 2020, 44(19): 63-72.
LI Junhui, HOU Tao, MU Gang, et al. Primary frequency regulation strategy with energy storage system based on weight factors and state of charge recovery[J]. Auto-mation of Electric Power Systems, 2020, 44(19): 63-72.
(责任编辑 李园)

备注/Memo

洪烽(1991),男,博士,讲师,主要研究方向为储能+发电支撑电网调频运行控制,hongf@ncepu.edu.cn。

更新日期/Last Update: 2023-01-15