GAO Manda,LI Gengda,CHEN Yanqiao,et al.Application of advanced detection and 5G communication technology in coal-fired boiler operation monitoring[J].Thermal Power Generation,2023,52(01):18-25.[doi:10.19666/j.rlfd.202204061]
先进检测与5G通信技术在燃煤锅炉运行监测中的应用研究
- Title:
- Application of advanced detection and 5G communication technology in coal-fired boiler operation monitoring
- 摘要:
- 为构建以新能源为主体的新型电力系统,火电机组在保电供热的同时要承担灵活运行、深度调峰的任务。但传统检测和通信技术受限于实时性差、传输慢、投资高等问题,难以支撑火电机组新需求。先进检测技术和以5G为代表的通信技术通过构建完整的检测传输链条,为以锅炉燃烧系统为代表的火电机组状态研判、运行调整等提供了坚实的技术支撑,但也面临建设投资高、专业人才和标准匮乏等问题。只有从生产实际出发,健全机制、转变观念,才能做实先进检测及通信技术的应用效果。作为智慧电厂的重要组成部分,先进检测和5G通信技术必将为火电整体智能化水平提升提供坚实的基础。
参考文献/References:
[1] 工业和信息化部, 国家发展改革委, 国家能源局. 关于推进“互联网+”智慧能源发展的指导意见: 发改能源〔2016〕392号[A]. (2016-02-29) [2022-04-20].
Ministry of Industry and Information Technology, National Development and Reform Commission, National Energy Administration. Guidance on promoting the development of “Internet +” smart energy: FGNY〔2016〕No.392[A]. (2016-02-29) [2022-04-20].
[2] 国家发展改革委, 国家能源局. 电力发展“十三五”规划(2016—2020)[R]. 2016: 1-46.
National Development and Reform Commision, National Energy Administration. The 13th Five Year Plan for electric power development (2016—2020)[R]. 2016: 1-46.
[3] 国家发展改革委, 国家能源局. 关于开展全国煤电机组改造升级的通知: 发改运行〔2021〕1519号[A]. (2021-10-29) [2022-04-20].
National Development and Reform Commission, National Energy Administration. Notice on carrying out the transformation and upgrading of coal-fired power units nationwide: FGYX〔2021〕No.1519[A]. (2021-10-29) [2022-04-20].
[4] 赵晴川. 同心切圆燃烧系统偏转二次风的试验研究与探讨[J]. 热力发电, 2007, 36(3): 41-44.
ZHAO Qingchua. Test study on and approach to biased secondary air in concentrically and tangentially firing system[J]. Thermal Power Generation, 2007, 36(3): 41-44.
[5] 朱晓星, 陈厚涛, 昌学年, 等. 火电机组风烟系统智能控制模块设计与应用[J]. 中国电力, 2016, 49(6): 1-5.
ZHU Xiaoxing, CHEN Houtao, CHANG Xuenian, et al. Design and implementation of intelligent control function module for air and flue gas system of thermal power units[J]. Electric Power, 2016, 49(6): 1-5.
[6] 王然, 张志刚, 孙保民, 等. 红外测温技术在炉膛温度场检测中的应用[J]. 热力发电, 2017, 46(6): 136-140.
WANG Ran, ZHANG Zhigang, SUN Baomin, et al. Application of infrared temperature detection technology in furnace temperature field measurement[J]. Thermal Power Generation, 2017, 46(6): 136-140.
[7] 王立. 基于辐射的反演电厂炉膛火焰温度场三维重 建[D]. 北京: 华北电力大学, 2019: 21-29.
WANG Li. Three-dimensional reconstruction algorithm of furnace flame based inversion calculation of thermal radiation[D]. Beijing: North China Electric Power University, 2019: 21-29.
[8] YAN Y. Guide to the flow measurement of particulate solids in pipelines part 2: utilisation in pneumatic conveying and emission monitoring[J]. Powder Handling and Processing, 2002, 14(1): 15-18.
[9] 赵勇纲, 杨传博, 冀树春, 等. 高能脉冲激光煤质在线检测技术的应用研究[J]. 煤炭工程, 2019, 51(7): 80-83.
ZHAO Yonggang, YANG Chuanbo, JI Shuchun, et al. Application of high energy pulsed laser technology to online detection of coal quality[J]. Coal Engineering, 2019, 51(7): 80-83.
[10] 张励维. 基于LIBS的气力输送煤粉成分快速检测研究[D]. 唐山: 华北理工大学, 2017: 10-20.
ZHANG Liwei. Fast detection of pulverized coal composition based on LIBS[D]. Tangshan: North China University of Technology, 2017: 10-20.
[11] 李雄威. 激光诱导击穿光谱法测量煤中碳含量的基体效应及其消除[D]. 北京: 清华大学, 2014: 25-43.
LI Xiongwei. Matrix effect in measurements of carbon content in coal by laser induced breakdown spectroscopy and its correction methods[D]. Beijing: Tinghua University, 2014: 25-43.
[12] 湛志钢, 熊扬恒, 周昊, 等. 超超临界1 000 MW机组锅炉煤粉分配器的数值模拟[J]. 热力发电, 2011, 40(5): 20-23.
ZHAN Zhigang, XIONG Yangheng, ZHOU Hao, et al. Numerical simulation of pulverized coal distributor for boiler equipped for ultra-supercritical 1 000 MW unit[J]. Thermal Power Generation, 2011, 40(5): 20-23.
[13] 张孝勇, 钱颖杰, 孙先端, 等. 一次风速度和煤粉质量浓度对等离子燃烧器一级燃烧筒点火特性的影响[J]. 中国电力, 2007, 40(8): 61-65.
ZHANG Xiaoyong, QIAN Yingjie, SUN Xianduan, et al. Effect of primary air velocity and pulverized coal concentration on the ignition characteristics of the first stage chamber for plasma burner[J]. Electric Power, 2007, 40(8): 61-65.
[14] 李国堂, 康振兴, 郭会景. 1 000 MW超超临界机组热一次风系统布置分析[J]. 锅炉技术, 2012, 43(4): 9-12.
LI Guotang, KANG Zhenxing, GUO Huijing. Analysis of thermal primary air system layout of 1 000 MW ultra supercritical unit[J]. Boiler Technology, 2012, 43(4): 9-12.
[15] 李路明. 微油点火水平浓淡煤粉燃烧器数值模拟及应用[J]. 电站系统工程, 2014, 30(4): 23-25.
LI Luming. Numerical simulation and application of minimum oil gun horizontal bias combustion burner[J]. Power System Engineering, 2014, 30(4): 23-25.
[16] 王通, 武万强, 于强, 等. 大型锅炉二次风箱内防积灰导流板的数值模拟计算[J]. 锅炉制造, 2018(6): 5-9.
WANG Tong, WU Wanqiang, YU Qiang, er al. Numerical simulation on the anti-ash guide vane in the windbox of large-capacity boilers[J]. Boiler Manufacturing, 2018(6): 5-9.
[17] 赵俊杰, 冯树臣, 杨如意, 等. 新基建时代的燃煤智慧电厂建设与技术升级分析[J]. 神华科技, 2019, 17(12): 5-10.
ZHAO Junjie, FENG Shuchen, YANG Ruyi, et al. Construction and technical upgrading analysis of coal-fired intelligent power plants in the new infrastructure era[J]. Shenhua Science and Technology, 2019, 17(12): 5-10.
[18] 赵俊杰, 冯树臣, 刘志宏, 等. 5G电力网络切片技术在燃煤智慧电厂生产管控应用分析[J]. 能源科技, 2020, 18(2): 5-10.
ZHAO Junjie, FENG Shuchen, LIU Zhihong, et al. Application analysis of production management and control of coal-fired intelligent power plant based on 5G power network slicing technology[J]. Energy Science and Technology, 2020, 18(2): 5-10.
[19] 李志刚, 匡亮, 张建斌, 等. 基于5G技术的智能巡检机器人在燃煤智慧电厂的多场景应用[J]. 电力系统装备, 2021(1): 122-123.
LI Zhigang, KUANG Liang, ZHANG Jianbin, et al. Multi-scene application of intelligent inspection robots based on 5G technology in coal-fired smart power plants[J]. Electric Power System Equipment, 2021(1): 122-123.
[20] 俞建江, 王浩君. 一种基于5G的智慧电厂工业应用解决方案[J]. 电子测试, 2021(8): 124-126.
YU Jianjiang, WANG Haojun. A 5G-based industrial application solution for smart power plants[J]. Electronic Test, 2021(8): 124-126.
[21] 柳曦, 胡波, 王宾, 等. 5G通信技术在火电厂的应 用[J]. 热力发电, 2020, 49(11): 8-13.
LIU Xi, HU Bo, WANG Bin, et al. Applications of 5G communication technology in thermal power plants[J]. Thermal Power Generation, 2020, 49(11): 8-13.
[22] 孟凡喜. 锅炉二次风大风箱改善积灰优化研究[D]. 杭州: 浙江大学, 2017: 19-24.
MENG Fanxi. Study on improvement of ash deposition of secondary air bellows in boilers[D]. Hangzhou: Zhejiang University, 2017: 19-24.
[23] BLONDEAU J, RIJMENANS L, ANNENDIJCK J, et al. Burner air-fuel ratio monitoring in large pulverised-fuel boilers using advanced sensors: case study of a 660 MWe coal-fired power plant[J]. Thermal Science and Engineering Progress, 2018, 5: 471-481.
[24] BLONDEAU J, KOCK R, MERTENS J, et al. Online monitoring of coal particle size and flow distribution in coal-fired power plants: dynamic effects of a varying mill classifier speed[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2016, 98: 449-454.
[25] WANG Q, CHEN Z, WANG L, et al. Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners[J]. Applied Energy, 2018, 223: 358-368.
(责任编辑 杜亚勤)
相似文献/References:
[1]杨国田,何雨晨,李 鑫,等.基于梯度提升决策树改进双向门限循环单元的锅炉变负荷燃烧系统建模[J].热力发电,2021,50(12):6.[doi:10.19666/j.rlfd.202105099
]
YANG Guotian,HE Yuchen,LI Xin,et al.Modeling of boiler combustion system at variable load using GBDT-BiGRU[J].Thermal Power Generation,2021,50(01):6.[doi:10.19666/j.rlfd.202105099
]
备注/Memo
高满达(1990),男,博士,主要研究方向为智能火电关键技术,manda.gao@chnenergy.com.cn。