ZHANG Longhui,LIN Dehai,WANG Ying,et al.Review of applications of machine learning in nitrogen oxides reduction in thermal power plants[J].Thermal Power Generation,2023,52(01):7-17.[doi:10.19666/j.rlfd.202206132]
机器学习在火电厂NOx减排中的应用综述
- Title:
- Review of applications of machine learning in nitrogen oxides reduction in thermal power plants
- 摘要:
- 随着火电厂超低排放改造的完成,产生了成本增加、喷氨超标等问题。通过机器学习对电厂运行数据建模和优化成为解决这一问题的重要手段。综述了NOx减排中常用的机器学习算法及其应用场景。在算法方面,归纳了数据预处理、算法模型和模型参数优化3个过程的研究现状,给出了各个过程多种机器学习算法的应用情况及适用性,提出了变工况数据预处理方法、多目标优化中目标函数的构造方法等未来研究方向。在应用层面,总结了机器学习在炉内低氮燃烧、选择性催化还原(SCR)烟气脱硝系统运行优化、全系统综合节能降耗等过程的实施方法及其运行效果,展望了长周期动态建模控制及多电厂联合建模等未来应用场景。
参考文献/References:
[2] 朱晨曦, 郑迎九, 周昊. SNCR+SCR烟气联合脱硝工艺在电站锅炉中的应用[J]. 中国电力, 2016, 49(2): 164-169.
ZHU Chenxi, ZHENG Yingjiu, ZHOU Hao. The application of SNCR+SCR united flue gas denitration technique in power generation boilers[J]. Electric Power, 2016, 49(2): 164-169.
[3] 王乐乐, 孔凡海, 何金亮, 等. 超低排放形势下SCR脱硝系统运行存在问题与对策[J]. 热力发电, 2016, 45(12): 19-24.
WANG Lele, KONG Fanhai, HE Jinliang, et al. Difficulties and countermeasures of SCR denitration system operation in ultra low emission situation[J]. Thermal Power Generation, 2016, 45(12): 19-24.
[4] 马振涛, 涂鸿, 罗树林. SNCR-SCR联合脱硝超低排放运行诊断及优化[J]. 热力发电, 2019, 48(6): 40-45.
MA Zhentao, TU Hong, LUO Shulin. Operation diagnosis and optimization for ultra low emission with combined SNCR-SCR denitrification technology[J]. Thermal Power Generation, 2019, 48(6): 40-45.
[5] 马大卫, 张其良, 黄齐顺, 等. 超低排放改造后SCR出口NOx分布及逃逸氨浓度评估研究[J]. 中国电力, 2017, 50(5): 168-171.
MA Dawei, ZHANG Qiliang, HUANG Qishun, et al. Assessment of NOx distribution and ammonia escape concentration at SCR outlet after ultra-low emission retrofit[J]. Electric Power, 2017, 50(5): 168-171.
[6] 王宝冬, 汪国高, 刘斌, 等. 选择性催化还原脱硝催化剂的失活、失效预防、再生和回收利用研究进展[J]. 化工进展, 2013, 32(增刊1): 133-139.
WANG Baodong, WANG Guogao, LIU Bin, et al. Development of SCR catalyst deactivation, regeneration and recycling[J]. Chemical Industry and Engineering Progress, 2013, 32(Suppl.1): 133-139.
[7] 唐昊, 李慧, 杨江毅, 等. NH3-SCR工艺中硫酸铵盐的生成与分解机理研究进展[J]. 化工进展, 2018, 37(3): 822-831.
TANG Hao, LI Hui, YANG Jiangyi, et al. Research progress on the formation and decomposition mechanism of ammonium-sulfate salts in NH3-SCR technology[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 822-831.
[8] 张道军, 马子然, 孙琦, 等. 硫酸氢铵在钒基选择性催化还原催化剂表面的生成、作用及防治[J]. 化工进展, 2018, 37(7): 2635-2643.
ZHANG Daojun, MA Ziran, SUN Qi, et al. Formation mechanism, effects and prevention of NH4HSO4 formed on the surface of V2O5 based catalysts[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2635-2643.
[9] 张军, 陈鸥, 罗志刚, 等. 基于大数据的总排口NOx浓度分析及预测[J]. 洁净煤技术, 2020, 26(增刊1): 200-205.
ZHANG Jun, CHEN Ou, LUO Zhigang, et al. Big data analysis and prediction of NOx concentration at the chimney[J]. Clean Coal Technology, 2020, 26(Suppl.1): 200-205.
[10]高学伟, 付忠广, 张连升, 等. 大数据技术在燃煤电站发展中的应用研究[J]. 沈阳工程学院学报(自然科学版), 2018, 14(1): 7.
GAO Xuewei, FU Zhongguang, ZHANG Liansheng, et al. Application of big data technology in the development of coal-fired power station[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2018, 14(1): 7.
[11] HAWKIN S, DOUGLAS M. Identification of outliers[M]. London: Chapman and Hall, 1980: 1-12.
[12] HUBERT M, ROUSSEEUW P J, AELST S V. Multiva-riate outlier detection and robustness[J]. Handbook of Statistics, 2005, 24(4): 263-302.
[13] 薛毅, 陈丽萍. 统计建模与R软件[M]. 北京: 清华大学出版社, 2007: 297-394.
XUE Yi, CHEN Liping. Statistical modeling and R soft-ware[M]. Beijing: Tsinghua University Press, 2007: 297-394.
[14] 王珂, 王天秀. 基于二次聚类的电力负荷异常数据辨识[J]. 电气技术, 2014, 15(11): 1-3.
WANG Ke, WANG Tianxiu. Identification of abnormal power load data based on two times clustering[J]. Electrical Engineering, 2014, 15(11): 1-3.
[15] 刘吉臻, 秦天牧, 杨婷婷, 等. 基于自适应多尺度核偏最小二乘的SCR烟气脱硝系统建模[J]. 中国电机工程学报, 2015, 35(23): 6083-6088.
LIU Jizhen, QIN Tianmu, YANG Tingting, et al. SCR denitration system modeling based on self-adaptive multi-scale kernel partial least squares[J]. Proceedings of the CSEE, 2015, 35(23): 6083-6088.
[16] 董泽, 马宁, 任林, 等. 基于变量相关性自适应即时学习算法的火电厂SCR脱硝系统建模[J]. 华北电力大学学报(自然科学版), 2019, 46(2): 83-90.
DONG Ze, MA Ning, REN Lin, et al. Power plant SCR denitration system modeling based on variable correlation self-adaptive just-in-time learning[J]. Journal of North China Electric Power University, 2019, 46(2): 83-90.
[17] 朱宇坤, 喻聪, 张梯华, 等. 基于大容量样本挖掘及贝叶斯堆栈泛化集成算法的电站锅炉NOx稳态建模[J]. 热力发电, 2022, 51(8): 154-163.
ZHU Yukun, YU Cong, ZHANG Tihua, et al. Steady-state NOx modeling using big data mining and Bayesian stacking generalization ensemble algorithm for utility boilers[J]. Thermal Power Generation, 2022, 51(8): 154-163.
[18] 齐敏芳. 大数据技术及其在电站机组分析中的应 用[D]. 北京: 华北电力大学, 2016: 29-57.
QI Minfang. Big data technology and its application on the analysis of power plant units[D]. Beijing: North China Electric Power University, 2016: 29-57.
[19] 王颖雪. 基于灰色关联的火电行业NOx排放组合预 测[D]. 北京: 华北电力大学, 2013: 1.
WANG Yingxue. Combined forecasting of NOx emission of electric power industry based on grey relation[D]. Beijing: North China Electric Power University, 2013: 1.
[20] 侯玉婷, 薛建中, 王林, 等. 用于SCR喷氨量模型参数辨识的辅助变量递推最小二乘法[J]. 热力发电, 2015, 44(11): 6.
HOU Yuting, XUE Jianzhong, WANG Lin, et al. Recursive instrumental variable estimation algorithm for ammonia flow model in SCR denitration reactors[J]. Thermal Power Generation, 2015, 44(11): 6.
[21] 马善为, 曲艳超, 刘吉, 等. 基于样本优化的BP神经网络SCR脱硝催化剂体积设计[J]. 节能, 2021, 40(2): 5.
MA Shanwei, QU Yanchao, LIU Ji, et al. Design of SCR catalyst volume based on BP neural network with optimized net training[J]. Energy Conservation, 2021, 40(2): 5.
[22] 张璐遥. 基于互信息分析的SCR脱硝系统动态建模方法研究[D]. 保定: 华北电力大学, 2019: 1.
ZHANG Luyao. Mutual information based research on dynamic modeling of SCR system[D]. Baoding: North China Electric Power University, 2019: 1.
[23] MAY R J, MAIER H R, DANDY G C, et al. Non-linear variable selection for artificial neural networks using partial mutual information[J]. Environmental Modelling and Software, 2008, 23(10/11): 1312-1326.
[24] 唐洪宇. 电站锅炉热效率及NOx排放量优化研究[D]. 哈尔滨: 哈尔滨理工大学, 2018: 26-43.
TANG Hongyu. The optimization study on thermal efficiency and NOx emission of utility boilers[D]. Harbin: Harbin University of Science and Technology, 2018: 26-43.
[25] 赵文杰, 张楷. 基于互信息变量选择的SCR烟气脱硝系统非线性自回归神经网络建模[J]. 热力发电, 2018, 47(9): 22-26.
ZHAO Wenjie, ZHANG Kai. NARX neural network modeling of SCR denitration system based on mutual information variables selection[J]. Thermal Power Generation, 2018, 47(9): 22-26.
[26] 董泽, 闫来清. 基于互信息和多尺度小波核偏最小二乘的SCR脱硝系统预测模型[J]. 动力工程学报, 2019, 39(1): 50-58.
DONG Ze, YAN Laiqing. Prediction model for SCR denitrification system based on mutual information and multiscale wavelet kernel partial least squares[J]. Journal of Chinese Society of Power Engineer, 2019, 39(1): 50-58.
[27] 刘菡, 王英男, 李新利, 等. 基于互信息-图卷积神经网络的燃煤电站NOx排放预测[J]. 中国电机工程学报, 2022, 42(3): 8.
LIU Han, WANG Yingnan, LI Xinli, et al. Prediction of NOx emissions of coal-fired power plants based on mutual information-graph convolutional neural network[J]. Proceedings of the CSEE, 2022, 42(3): 8.
[28] 唐振浩, 朱得宇, 李扬. 基于数据驱动的燃煤锅炉NOx排放浓度动态修正预测模型[J]. 中国电机工程学报, 2022, 42(14): 1-13.
TANG Zhenhao, ZHU Deyu, LI Yang. Data driven based dynamic correction prediction model for NOx emission of coal fired boiler[J]. Proceedings of the CSEE, 2022, 42(14): 1-13.
[29] 刘吉臻, 秦天牧, 杨婷婷, 等. 基于偏互信息的变量选择方法及其在火电厂SCR系统建模中的应用[J]. 中国电机工程学报, 2016, 36(9): 2438-2443.
LIU Jizhen, QIN Tianmu, YANG Tingting, et al. Variable selection method based on partial mutual information and its application in power plant SCR system modeling[J]. Proceedings of the CSEE, 2016, 36(9): 2438-2443.
[30] 高学伟, 付忠广, 刘柄含, 等. SCR脱硝系统PCA- HPSO-SVR大数据建模研究[J]. 自动化仪表, 2017, 38(7): 15-19.
GAO Xuewei, FU Zhongguang, LIU Binghan, et al. Research on the big data modeling of SCR denitration system based on PCA-HPSO-SVR[J]. Process Automa-tion Instrumentation, 2017, 38(7): 15-19.
[31] 张晓雯, 向文国, 陈时熠, 等. 基于小波去噪和PCA- ANFIS的SCR脱硝系统建模[J]. 热力发电, 2021, 50(6): 114-120.
ZHANG Xiaowen, XIANG Wenguo, CHEN Shiyi, et al. Modeling of SCR denitrification system based on wavelet denoising and PCA-ANFIS[J]. Thermal Power Generation, 2021, 50(6): 114-120.
[32] 钟用禄, 李海山, 刘发圣, 等. 基于PCA-SVR的燃煤锅炉NOx排放预测[J]. 热力发电, 2015, 44(1): 87-90.
ZHONG Yonglu, LI Haishan, LIU Fasheng, et al. PCA-SVR model based NOx emissions prediction for coal-fired boilers[J]. Thermal Power Generation, 2015, 44(1): 87-90.
[33] SI F, ROMERO C E, YAO Z, et al. Optimization of coal-fired boiler SCRs based on modified support vector machine models and genetic algorithms[J]. Fuel, 2009, 88(5): 806-816.
[34] 耿平. 基于智能算法的燃煤电站锅炉经济运行与NOx排放多目标优化研究[D]. 南昌: 南昌大学, 2016: 9-60.
GENG Ping. Study on multi-objective optimization on economic operation and NOx emissions for coal-fired boiler based on intelligent algorithm[D]. Nanchang: Nanchang University, 2016: 9-60.
[35] 铉佳欢, 邸帅. BP神经网络算法在SCR脱硝系统中的应用[J]. 电站系统工程, 2020, 36(5): 5.
XUAN Jiahuan, DI Shuai, Application of BP neural network algorithm in SCR denitration system[J]. Power System Engineering, 2020, 36(5): 5.
[36] 张志超. 电厂SCR脱硝系统建模与优化控制[D]. 北京: 华北电力大学, 2015: 14-50.
ZHANG Zhichao. Modeling and optimal control of SCR denitration system in thermal power plant[D]. Beijing: North China Electric Power University, 2015: 14-50.
[37] 翟永杰, 张志超. 基于现场数据的SCR脱硝反应器建模[J]. 计算机仿真, 2014, 31(10): 141-144.
ZHAI Yongjie, ZHANG Zhichao. Modeling for SCR denitration reactor based on field[J]. Computer Simulation, 2014, 31(10): 141-144.
[38] 杨碧源, 赵金笑, 魏宏鸽, 等. 基于BP神经网络的SCR蜂窝状催化剂脱硝性能预测[J]. 中国电力, 2016, 49(10): 127-131.
YANG Biyuan, ZHAO Jinxiao, WEI Hongge, et al. Performance forecasting for SCR honeycomb catalyst based on BP neural network[J]. Electric Power, 2016, 49(10): 127-131.
[39] 周洪煜, 张振华, 张军, 等. 超临界锅炉烟气脱硝喷氨量混结构-径向基函数神经网络最优控制[J]. 中国电机工程学报, 2011, 31(5): 108-113.
ZHOU Hongyu, ZHANG Zhenhua, ZHANG Jun, et al. Mixed structure-radial basis function neural network optimal control on spraying ammonia flow for supercritical boiler flue gas denitrification[J]. Proceedings of the CSEE, 2011, 31(5): 108-113.
[40] 周洪煜, 赵乾, 张振华, 等. 烟气脱硝喷氨量SA-RBF神经网络最优控制[J]. 控制工程, 2012, 19(6): 947-951.
ZHOU Hongyu, ZHAO Qian, ZHANG Zhenhua, et al. Sensitivity analysis radial basis function neural network control on spraying ammonia flow denitrification[J]. Control Engineering of China, 2012, 19(6): 947-951.
[41] 李庆伟, 申志文. 基于改进差分极端学习机的燃煤锅炉NOx预测[J]. 热科学与技术, 2022, 21(1): 7.
LI Qingwei, SHEN Zhiwen. Prediction of NOx emission of coal-fired boilers based on improved differential evolution algorithm and extreme learning machine[J]. Journal of Thermal Science and Technology, 2022, 21(1): 7.
[42] 马良玉, 程善珍, 王永军. 正弦算法优化正则化ELM在NOx排放量建模中的应用[J]. 华北电力大学学报(自然科学版), 2022, 49(3): 7.
MA Liangyu, CHENG Shanzhen, WANG Yongjun. Application of sine algorithm optimized regularized ELM in boiler NOx emission modeling[J]. Journal of North China Electric Power University (Natural Science Edition), 2022, 49(3): 7.
[43] LI G Q, QI X B, CHAN K C C, et al. Deep bidirectional learning machine for predicting NOx emissions and boiler efficiency from a coal-fired boiler[J]. Energy & Fuels, 2017, 31(10): 11471-11480.
[44] 唐诗洁, 陆强, 王则祥, 等. 燃煤电厂SCR烟气脱硝催化剂寿命预测研究[J]. 热力发电, 2019, 48(3): 61-68.
TANG Shijie, LU Qiang, WANG Zexiang, et al. Life prediction of SCR flue gas denitration catalyst in coal-fired power plants[J]. Thermal Power Generation, 2019, 48(3): 61-68.
[45] 周建国, 王颖雪. 基于DGM和TDNN的火电行业NOx排放量变权组合预测[J]. 中国电机工程学报, 2012, 32(增刊1): 151-157.
ZHOU Jianguo, WANG Yingxue. Variable weights combination forecast of NOx emissions based on DGM and TDNN in thermal power industry[J]. Proceedings of the CSEE, 2012, 32(Suppl.1): 151-157.
[46] 王鑫. 基于Jordan循环神经网络的SCR脱硝系统NOx排放量的短期预测[D]. 包头: 内蒙古科技大学. 2020: 40-46.
WANG Xin. Short-term prediction of NOx emission in SCR denitrification system based on Jordan circulating neural network[D]. Baotou: Inner Mongolia University of Science & Technology. 2020: 40-46.
[47] 康俊杰. 电站锅炉燃烧和SCR脱硝系统一体化建模与优化控制研究[D]. 北京: 华北电力大学, 2021: 37-70.
KANG Junjie. Research on integrated modeling and optimal control of combustion and SCR denitration system in power plant boiler[D]. Beijing: North China Electric Power University, 2021: 37-70.
[48] 王祖林, 韩硕, 康俊杰, 等. 基于双向深度学习的电站锅炉SCR脱硝系统入口NOx浓度预测[J]. 仪表与自动化装置, 2021, 36(1): 82-87.
WANG Zulin, HAN Shuo, KANG Junjie, et al. Pridiction of NOx concentration at the inlet of SCR denitration system of utility boiler based on bidirectional deep learning[J]. Automation & Instrumentation, 2021, 36(1): 82-87.
[49] 曹楠. 燃煤电站SCR精细化喷氨控制技术研究与应 用[D]. 武汉: 华中科技大学, 2019: 9-20.
CAO Nan. Research and application of SCR control system for coal-fired power plants[D]. Wuhan: Huazhong University of Science & Technology, 2019: 9-20.
[50] 刘近, 徐亚豹. 基于能源网络系统中燃煤锅炉NOx排放的深度学习模型研究[J]. 能源与环保, 2022, 44(3): 8.
LIU Jin, XU Yabao. Research on deep learning model based on NOx emissions from coal-fired boilers in energy network system[J]. China Energy and Environmental Protection, 2022, 44(3): 8.
[51] 林康威, 肖红, 姜文超, 等. 基于DDPG深度强化学习的电站脱硝过程优化控制[J]. 计算机测量与控制, 2022, 30(10),132-139.
LIN Kangwei, XIAO Hong, JIANG Wencao, et al. Optimal control of denitrification processes in coal-fired power plants based on deterministic policy gradients with deep reinforcement learning[J]. Computer Measure-ment & Control, 2022, 30(10),132-139.
[52] 李开创. 基于集成学习方法的电站锅炉NOx排放预测研究[D]. 吉林: 东北电力大学, 2021: 19-51.
LI Kaichuang. Research on NOx emission prediction of power plant boiler based on ensemble learning method[D]. Jilin: Northeast Electric Power University, 2021: 19-51.
[53] LI G, NIU P, ZHANG W, et al. Model NOx emissions by least squares support vector machine with tuning based on ameliorated teaching-learning-based optimization[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 126: 11-20.
[54] ZHOU H, ZHAO J P, ZHENG L G, et al. Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization[J]. Engineering Applications of Artificial Intelligence, 2012, 25(1): 147-158.
[55] 程琳, 赵文杰. 基于GA-ELM的SCR脱硝系统动态建模[J]. 热力发电, 2019, 48(6): 29-33.
CHENG Lin, ZHAO Wenjie. Dynamic modeling of SCR denitrification system based on GA-ELM[J]. Thermal Power Generation, 2019, 48(6): 29-33.
[56] 李鹏辉. 基于智能算法的燃煤电站锅炉NOx排放模型及优化研究[D]. 南昌: 南昌大学, 2015: 42-53.
LI Penghui. NOx emission of coal-fired boiler model and optimization based on intelligent algorithm[D]. Nanchang: Nanchang University, 2015: 42-53.
[57] 周建新, 司风琪, 汪军, 等. 大型电站燃煤锅炉低NOx燃烧优化系统及应用[J]. 锅炉技术, 2011, 42(4): 18-22.
ZHOU Jianxin, SI Fengqi, WANG Jun, et al. Study and application of boiler operation optimization for low NOx emissions in coal-fired power plant[J]. Boiler Technology, 2011, 42(4): 18-22.
[58]程广凯. 基于机理-数据融合的滚动轴承故障诊断方法研究[D]. 西安: 西安电子科技大学, 2021: I-II.
CHENG Guangkai. Research on rolling bearing fault diagnosismethod based on mechanism and data fusion[D]. Xi’an: Xidian University, 2021: I-II.
[59]宋涛, 张兴, 章佳威, 等. 基于机器学习的半机理脱硝模型研究[J]. 工业控制计算机, 2019, 32(3): 69-70.
SONG Tao, ZHANG Xing, ZHANG Jiawei, et al. Research on semi-mechanism denitration model based on machine learning[J]. Industrial Control Computer, 2019, 32(3): 69-70.
[60]胡佳颖, 喻聪, 王子良, 等. 机理与数据驱动的电站锅炉SCR催化剂寿命预测模型研究[J]. 能源研究与利用, 2022(2): 2-7.
HU Jiaying, YU Cong, WANG Ziliang, et al. Study on mechanism and data-driven SCR catalyst life prediction model for utility boilers[J]. Energy Research and Utilization, 2022(2): 2-7.
[61]沈伯雄, 张浩浩, 吴撼明, 等. SCR烟气脱硝催化剂V-W-TiO2失活预测模型[J]. 热力发电, 2017, 46(9): 24-30.
SHEN Boxiong, ZHANG Haohao, WU Hanming, et al. Deactivation prediction model for flue gas denitration catalyst V-W-TiO2[J]. Thermal Power Generation, 2017, 46(9): 24-30.
[62]饶德备. 燃煤电站SCR系统建模及喷氨策略优化[D]. 武汉: 华中科技大学, 2020: 7-42.
RAO Debei. Modeling and optimization strategy of ammonia injection of SCR denitration system[D]. Wuhan: Huazhong University of Science & Technology, 2020: 7-42.
[63] 董长青, 马帅, 傅玉, 等. 火电厂SCR脱硝催化剂寿命预估研究[J]. 华北电力大学学报(自然科学版), 2016, 43(3): 64-68.
DONG Changqing, MA Shuai, FU Yu, et al. Study on life prediction of SCR denitration catalyst in thermal power plant[J]. Journal of North China Electric Power University (Natural Science Edition), 2016, 43(3): 64-68.
[64]肖军. 火电厂烟气脱硝控制系统中的喷氨量优化建模与仿真[J]. 粘接, 2022, 49(7): 4.
XIAO Jun. Optimal modeling and simulation of ammonia injection in flue gas denitration control system of thermal power plant[J]. Adhesion, 2022, 49(7): 4.
[65] REIFMAN J, FELDMAN E E. Identification and control of NOx emissions using neural networks[J]. Journal of the Air & Waste Management Association, 1998, 48(5): 174-185.
[66] ADALI T, BAKA B, SONMEZ M K, et al. NOx and CO prediction with variable tapped delay line neural networks[J]. Journal of Intergrated Computer-Aided Engineering, 1999, 6(1): 27-39.
[67] CHONG A Z S, WILCOX S J, WARD J. Prediction of gaseous emissions from a chain grate stoker boiler using neural networks of ARX structure[J]. IEE Proceedings- Science, Measurement and Technology, 2001, 148(3): 95-102.
[68] ILAMATHI P, SELLADURAI V, BALAMURUGAN K, et al. ANN-GA approach for predictive modeling and optimization of NOx emission in a tangentially fired boiler[J]. Clean Technologies and Environmental Policy, 2013, 15(1): 125-131.
[69] ZHOU H, ZHENG L, CEN K. Computational intelligence approach for NOx emissions minimization in a coal-fired utility boiler[J]. Energy Conversion and Management, 2010, 51(3): 580-586.
[70] WEI Z, LI X, XU L, et al. Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler[J]. Energy, 2013, 55: 683-692.
[71] TAN P, XIA J, ZHANG C, et al. Modeling and reduction of NOx emissions for a 700 MW coal-fired boiler with the advanced machine learning method[J]. Energy, 2016, 94: 672-679.
[72] LIUKKONEN M, H?LIKK? E, HILTUNEN T, et al. Dynamic soft sensors for NOx emissions in a circulating fluidized bed boiler[J]. Applied Energy, 2012, 97: 483-490.
[73] 秦天牧, 林道鸿, 杨婷婷, 等. SCR烟气脱硝系统动态建模方法比较[J]. 中国电机工程学报, 2017, 37(10): 2913-2919.
QIN Tianmu, LIN Daohong, YANG Tingting, et al. Comparative study on dynamic modeling methods of SCR denitration system[J]. Proceedings of the CSEE, 2017, 37(10): 2913-2919.
[74] PENG H, OZAKI T, TOYODA Y, et al. RBF-ARX model-based nonlinear system modeling and predictive control with application to a NOx decomposition process[J]. Control Engineering Practice, 2004, 12(2): 191-203.
[75] 秦天牧. 燃煤电站SCR烟气脱硝系统建模与喷氨量优化控制[D]. 北京: 华北电力大学, 2017: 31-87.
QIN Tianmu. The optimal control of ammonia injection based on the SCR model of a coal-fired power plant[D]. Beijing: North China Electric Power University, 2017: 31-87.
[76] 许昌, 吕剑虹, 郑源, 等. 以效率和低NOx排放为目标的锅炉燃烧整体优化[J]. 中国电机工程学报, 2006, 26(4): 46-50.
XU Chang, LYU Jianhong, ZHENG Yuan, et al. A boiler combustion global optimization on efficiency and low NOx emissions object[J]. Proceedings of the CSEE, 2006, 26(4): 46-50.
[77] 李伟, 徐强, 孔德安, 等. 电站锅炉SCR脱硝系统联合运行优化模型[J]. 热力发电, 2019, 48(6): 46-52.
LI Wei, XU Qiang, KONG Dean, et al. Optimization model for combined operation of SCR denitration system in utility boiler[J]. Thermal Power Generation, 2019, 48(6): 46-52.
[78] 李斌, 杨浩楠, 邓煜, 等. 350 MW燃煤机组选择性催化还原脱硝系统运行优化[J]. 化工进展, 2017, 36(8): 3100-3107.
LI Bin, YANG Haonan, DENG Yu, et al. Operation optimization of selective catalytic reduction denitrify- cation system for 350 MW coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 3100-3107.
(责任编辑 杜亚勤)
相似文献/References:
[1]王春昌.燃烧系统暨燃烧器对Nox排放量的影响[J].热力发电,2000,(05):0.
[2]闫志勇,魏恩宗,张慧娟,等.煤粉锅炉分能燃烧降低Nox排放的试验结果分析[J].热力发电,2001,(01):0.
[3]刘福国,杨兴森,赵晴川,等.MBF-23型磨煤机调试程序与运行优化[J].热力发电,2001,(04):0.
[4]凌荣华,文 军,齐春松.燃料分级燃烧技术的研究现况和应用前景[J].热力发电,2003,(08):0.
[5]翁安心,周 昊,王正华,等.大型四角切圆煤粉炉常用煤种及其混煤燃烧时Nox排放特性研究[J].热力发电,2003,(10):0.
[6]肖 平,蒋敏华.循环流化床锅炉的发展前景[J].热力发电,2004,(01):0.
[7]徐璋,邓涛,李戈,等.超细煤粉再燃降低NOx排放的试验研究[J].热力发电,2004,(02):0.
[8]陈占军,金 晶,钟海卿,等.超细化煤粉气流着火特性的试验研究[J].热力发电,2004,(04):0.
[9]曾小敏.沙角A电厂5号锅炉低Nox排放分析[J].热力发电,2005,(01):0.
[10]杨卫娟,周俊虎,刘建忠,等.选择催化还原SCR脱硝技术在电站锅炉的应用[J].热力发电,2005,(09):0.
[11]李玉然,杨立寨,由长福,等.用于氨和轻烃SCR脱硝的催化剂研究进展[J].热力发电,2009,(04):0.
[12]王乐乐,孔凡海,何金亮,等.超低排放形势下SCR脱硝系统运行存在问题与对策[J].热力发电,2016,(12):19.
WANG Lele,KONG Fanhai,HE Jinliang,et al.Difficulties and countermeasures of SCR denitration system operation in ultra low emission situation[J].Thermal Power Generation,2016,(01):19.
备注/Memo
张珑慧(1989),女,博士,工程师,主要研究方向为大气污染物治理及智慧电厂,longhui.zhang@chnenergy.com.cn。