[1]姜 超,董鹤鸣,谢 敏,等.超临界二氧化碳工质品质规范研究及展望[J].热力发电,2022,51(01):21-32.[doi:10.19666/j.rlfd.202109160]
 JIANG Chao,DONG Heming,XIE Min,et al.Research and prospect of quality standardization of supercritical carbon dioxide working medium[J].Thermal Power Generation,2022,51(01):21-32.[doi:10.19666/j.rlfd.202109160]
点击复制

超临界二氧化碳工质品质规范研究及展望

参考文献/References:

[1] 姜超, 董鹤鸣, 谢敏, 等. 超临界二氧化碳传热恶化现象研究进展[J]. 热力发电, 2021, 50(10): 1-13.
JIANG Chao, DONG Heming, XIE Min, et al. Research progress on heat transfer deterioration of supercritical carbon dioxide[J]. Thermal Power Generation, 2021, 50(10): 1-13.
[2] DOSTAL V, HEJZLAR P, DRISCOLL M. The supercritical carbon dioxide power cycle: comparison to other advanced power cycles[J]. Nuclear Technology, 2006, 154(3): 283-301.
[3] 徐进良, 刘超, 孙恩慧, 等. 超临界二氧化碳动力循环研究进展及展望[J]. 热力发电, 2020, 49(10): 1-10.
XU Jinliang, LIU Chao, SUN Enhui, et al. Review and perspective of supercritical carbon dioxide power cycles[J]. Thermal Power Generation, 2020, 49(10): 1-10.
[4] CONBOY T, WRIGHT S, PASCH J, et al. Performance characteristics of an operating supercritical CO2 Brayton cycle[J]. Journal of Engineering for Gas Turbines & Power, 2012, 134(11): 111703-1-111703-12.
[5] MOORE J, CICH S, DAY-TOWLER M, et al. Develop-ment and testing of a 10 MWe supercritical CO2 turbine in a 1 MWe flow loop[C]. ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. 2020: 1.
[6] 中国科学院工程热物理研究所. 我国首座大型超临界二氧化碳压缩机实验平台建成投运[EB/OL]. (2018-09-29) [2021-06-09]. http://www.iet.cas.cn/xwdt/ kydt/2018 09/t20180929_5110325.html.
Institute of Engineering Thermophysics, Chinese Academy of Sciences. China’s first large-scale supercri-tical carbon dioxide compressor experimental platform was built and put into operation[EB/OL]. (2018-09-29) [2021-06-09]. http://www.iet.cas.cn/xwdt/kydt/201809/t 20180929_5110325.html.
[7] 中国科学院工程热物理研究所. 全温全压超临界二氧化碳换热器综合试验平台建设完成[EB/OL]. (2018-11-19) [2021-06-09]. http://www.iet.cas.cn/xwdt/kydt/2018 11/t20181119_5186305.html.
nstitute of Engineering Thermophysics, Chinese Academy of Sciences. Construction of a comprehensive test platform for full-temperature and full-pressure supercritical carbon dioxide heat exchanger was completed[EB/OL]. (2018-11-19) [2021-06-09]. http://www.iet.cas.cn/xwdt/kydt/201811/ t20181119_5186305.html.
[8] ZHU B, XU J, WU X, et al. Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes[J]. International Journal of Thermal Sciences, 2019, 136: 254-266.
[9] LI H, ZHANG Y, YAO M, et al. Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop[J]. Energy, 2019, 174: 792-804.
[10] International Standard Organization. Carbon dioxide capture, transportation, and geological storage-cross cutting issues-CO2 stream composition: ISO/TR 27921—2020[S]. Switzerland: Technical Committee ISO/TC 265, 2020: 1.
[11] Compressed Gas Association. Commodity specification for carbon dioxide: CGA G-6.2—2011[S]. 14501 George Carter Way, Suite 103, Chantilly, VA 2015: Compressed Gas Association, Inc, 2011: 4.
[12] DUSCHEK W, KLEINRAHM R, WAGNER W. Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide II. Saturated-liquid and saturated-vapour densities and the vapour pressure along the entire coexistence curve[J]. The Journal of Chemical Thermodynamics, 1990, 22(9): 827-840.
[13] SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1 100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596.
[14] YANG F, LIU Q, DUAN Y, et al. Crossover multipara-meter equation of state: General procedure and demonstration with carbon dioxide[J]. Fluid Phase Equilibria, 2019, 494: 161-171.
[15] VARZANDEH F, STENBY E H, YAN W. Comparison of GERG-2008 and simpler EoS models in calculation of phase equilibrium and physical properties of natural gas related systems[J]. Fluid Phase Equilibria, 2017, 434: 21-43.
[16] PELETIRI S P, MUJTABA I M, RAHMANIAN N. Process simulation of impurity impacts on CO2 fluids flowing in pipelines[J]. Journal of Cleaner Production, 2019, 240: 118145.
[17] DE VISSER E, HENDRIKS C, BARRIO M, et al. Dynamis CO2 quality recommendations[J]. International Journal of Greenhouse Gas Control, 2008, 2(4): 478-484.
[18] Final Activity Report. Towards hydrogen and electricity production with carbon dioxide capture and storage[R]. DYNAMIS, Project No.019672, 2009: D1.1.A-D1.1.F.
[19] Quality Guidelines for Energy System Studies, “CO2 impurity design parameters”: DOE/NETL-341/011212 [S]. Morgantown, Pittsburgh, Albany: National Energy Technology Laboratory, 2013: 13.
[20] HARKIN T, FILBY I, SICK H, et al. Development of a CO2 specification for a CCS hub network[J]. Energy Procedia, 2017, 114: 6708-6720.
[21] FORBES S M, VERMA P, CURRY T E, et al. CCS guidelines, guidelines for carbon dioxide capture, transport, and storage[R]. Washington D C: World Resources Institute, 2008: 1.
[22] 中华人民共和国工业和信息化部. 二氧化碳输送管道工程设计标准: SH/T 3202—2018[S]. 北京: 中国石化出版社, 2018: 2.
Ministry of Industry and Information Technology of the People’s Republic of China. Carbon dioxide transmission pipeline engineering design standard: SH/T 3202—2018[S]. Beijing: China Petrochemical Press, 2018: 2.
[23] Semiconductor Equipment and Materials International. Specification for carbon dioxide, CO2, electronic grade in cylinders: SEMI C3.57-0600[S]. 805 East Middlefield Road, Mountain View, CA 94043: European Regional Standards Committee, 2000: 1.
[24] 中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会. 高纯二氧化碳: GB/T 23938—2009[S]. 北京: 中国标准出版社, 2009: 1.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. High purity carbon dioxide: GB/T 23938—2009[S]. Beijing: Standards Press of China, 2009: 1.
[25] 中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会. 工业液体二氧化碳: GB/T 6052—2011[S]. 北京: 中国标准出版社, 2011: 1.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Industrial liquid carbon dioxide: GB/T 6052—2011[S]. Beijing: Standards Press of China, 2011: 1.
[26] 徐美楠,张立群,沈建冲. 超高纯(电子级)二氧化碳制备方法及技术展望核心技术[EB/OL]. (2019-12-19) [2021-06-09]. http://www.kuaikai.com/hxjs/show/ id/94. html.
XU Meinan, ZHANG Liqun, SHEN Jianchong. Ultra high purity (electronic) carbon dioxide preparation methods and technology outlook on core technology [EB/OL]. (2019-12-19) [2021-06-09]. http://www.kuaikai.com/ hxjs/ show/ id/94.html.
[27] 中国石油和化学工业联合会. 高纯二氧化碳(工作组讨论稿)[EB/OL]. (2019-09-23) [2021-06-09]. https:// www.doc88.com/p-7894724511201.html?r=1.
China Petroleum and Chemical Industry Federation. [EB/OL]. (2019-09-23) [2021-06-09]. https://www. doc88.com/p-7894724511201.html?r=1.
[28] LUDINGTON A. Tools for supercritical carbon dioxide cycle analysis and the cycle’s applicability to sodium fast reactors[D]. Boston: Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 2009: 1.
[29] 梁志远, 桂雍, 赵钦新. 超临界二氧化碳动力系统耐热材料高温腐蚀研究进展[J]. 装备环境工程, 2020, 17(7): 88-93.
LIANG Zhiyuan, GUI Yong, ZHAO Qinxin. Research progress on high-temperature corrosion of heat-resistant materials in supercritical carbon dioxide power system[J]. Equipment Environmental Engineering, 2020, 17(7): 88-93.
[30] 肖博, 朱忠亮, 李瑞涛, 等. 超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展[J]. 热力发电, 2020, 49(10): 30-37.
XIAO Bo, ZHU Zhongliang, LI Ruitao, et al. Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid[J]. Thermal Power Generation, 2020, 49(10): 30-37.
[31] 赵新宝, 鲁金涛, 袁勇, 等. 超临界二氧化碳布雷顿循环在发电机组中的应用和关键热端部件选材分析[J]. 中国电机工程学报, 2016, 36(1): 154-162.
ZHAO Xinbao, LU Jintao, YUAN Yong, et al. Analysis of supercritical carbon dioxide Brayton cycle and candidate materials of key hot components for power plants[J]. Proceedings of the CSEE, 2016, 36(1): 154-162.
[32] ROUILLARD F, CHARTON F, MOINE G. Corrosion behavior of different metallic materials in supercritical carbon dioxide at 550 ℃ and 250 bars[J]. Corrosion, 2011, 67(9): 095001-095001-7.
[33] TAN L, ANDERSON M, TAYLOR D, et al. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide[J]. Corrosion Science, 2011, 53(10): 3273-3280.
[34] CAO G, FIROUZDOR V, SRIDHARAN K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide[J]. Corrosion Science, 2012, 60: 246-255.
[35] ROUILLARD F, MOINE G, TABARANT M, et al. Corrosion of 9Cr Steel in CO2 at intermediate temperature II: Mechanism of carburization[J]. Oxidation of Metals, 2012, 77(1/2): 57-70.
[36] 梁志远, 桂雍, 赵钦新. 超临界二氧化碳条件下3种典型耐热钢腐蚀特性实验研究[J]. 西安交通大学学报, 2019, 53(7): 23-29.
LIANG Zhiyuan, GUI Yong, ZHAO Qinxin. Experi-mental study on corrosion characteristics of three typical heat-resistant steels under supercritical carbon dioxide conditions[J]. Journal of Xi’an Jiaotong University, 2019, 53(7): 23-29.
[37] PINT B A, LEHMUSTO J, LANCE M J, et al. Effect of pressure and impurities on oxidation in supercritical CO2[J]. Materials and Corrosion, 2019, 70(8): 1400-1409.
[38] 桂雍, 梁志远, 郭亭山, 等. 超临界二氧化碳环境中耐热材料的腐蚀行为研究[J]. 动力工程学报, 2021, 41(7): 602-608.
GUI Yong, LIANG Zhiyuan, GUO Tingshan, et al. Study on corrosion behavior of heat resistant materials in supercritical carbon dioxide environment[J]. Journal of Power Engineering, 2021, 41(7): 602-608.
[39]HOLCLMB G R, CARNEY C, DO?AN ? N. Oxidation of alloys for energy applications in supercritical CO2 and H2O[J]. Corrosion Science, 2016, 109: 22-35.
[40] MAHAFFEY J, KALRA A, ANDERSON M, et al. Materials corrosion in high temperature supercritical carbon dioxide[C]. The 4th International Symposium-Supercritical CO2 Power Cycles, Pittsburgh, Pennsylvania, 2014: 1.
[41] GLEZAKOU V A, DANG L X, MCGRAIL B P. Spontaneous activation of CO2 and possible corrosion pathways on the low-index iron surface Fe(100)[J]. Journal of Physical Chemistry C, 2014, 113(9): 3691-3696.
[42] SEIERSTEN M, KONGSHAUG K O. Materials selection for capture, compression, transport and injection of CO2[J]. Carbon Dioxide Capture for Storage in Deep Geologic Formations, 2005, 2: 937-953.
[43] NESIC S, LEE K. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-Part 3: film growth model[J]. Corrosion, 2003, 59(7): 616-628.
[44] HUA Y, BARKER R, NEVILLE A. The influence of SO2 on the tolerable water content to avoid pipeline corrosion during the transportation of supercritical CO2[J]. International Journal of Greenhouse Gas Control, 2015, 37: 412-423.
[45] SASS B, MONZYK B, RICCI S, et al. Impact of SOx and NOx in flue gas on CO2 separation, compression, and pipeline transmission[M]. Carbon Dioxide Capture for Storage in Deep Geologic Formations - Results from the CO2 Capture Project, 2005: 1.
[46] ZHANG Y, GAO K, SCHMITT G. Water effect on steel under supercritical CO2 condition[C]. NACE- Interna-tional Corrosion Conference Series, Houston, Texas, 2011: 1.
[47] THODLA R, FRANCOIS A, SRIDHAR N. Materials performance in supercritical CO2 environments[C]. Corrosion, Atlanta, Georgia, 2009: 1.
[48] MEIER G H, JUNG K, NAN M, et al. Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys[J]. Oxidation of Metals, 2010, 74(5/6): 319-340.
[49] 蒋春跃, 吴建峰, 孙志娟, 等. 水在超临界二氧化碳中的溶解度[J]. 化学工程, 2014, 42(7): 42-47.
JIANG Chunyue, WU Jianfeng, SUN Zhijuan, et al. Solubility of water in supercritical carbon dioxide[J]. Chemical Engineering, 2014, 42(7): 42-47.
[50] SABIRZYANOV A N, IL"IN A P, AKHUNOV A R, et al. Solubility of water in supercritical carbon dioxide[J]. High Temperature, 2002, 40(2): 203-206.
[51] DOHRN R, B?NZ A, DEVLIEGHERE F, et al. Experimental measurements of phase equilibria for ternary and quaternary systems of glucose, water, CO and ethanol with a novel apparatus[J]. Fluid Phase Equilibria, 1993, 83: 149-158.
[52] SAKO T, SUGETA T, NAKAZAWA N, et al. Phase equilibrium study of extraction and concentration of furfural produced in reactor using supercritical carbon dioxide[J]. Journal of Chemical Engineering of Japan, 2006, 24(4): 449-455.
[53] SPYCHER N, PRUESS K, ENNIS-KING J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 ℃ and up to 600 bar[J]. Geochimica et Cosmochi-mica Acta, 2003, 67(16): 3015-3031.
[54] HUA Y, JONNALAGADDA R, ZHANG L, et al. Assessment of general and localized corrosion behavior of X65 and 13Cr steels in water-saturated supercritical CO2 environments with SO2/O2[J]. International Journal of Greenhouse Gas Control, 2017, 64: 126-136.
[55] SUN J, SUN C, WANG Y. Effects of O2 and SO2 on water chemistry characteristics and corrosion behavior of X70 pipeline steel in supercritical CO2 transport system[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2365-2375.
[56] CHOI Y S, NESIC S, YOUNG D. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments[J]. Environ-mental Science & Technology, 2010, 44(23): 9233-9238.
[57] XIANG Y, WANG Z, XU C, et al. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2[J]. The Journal of Supercritical Fluids, 2011, 58(2): 286-294.
[58] WEI L, PANG X, GAO K. Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments[J]. Corrosion Science, 2016, 103: 132-144.
[59] CHOI Y S, HASSANI S, VU N, et al. Effect of H2S on the corrosion behavior of pipeline steels in supercritical and liquid CO2 environments[J]. Corrosion, 2016, 72(8): 999-1009.
[60] SUN C, SUN J, WANG Y, et al. Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system[J]. Corrosion Science, 2016, 107: 193-203.
[61] HUA Y, BARKER R, NEVILLE A. Corrosion behaviour of X65 steels in water-containing supercritical CO2 environments with NO2/O2[C]. NACE Corrosion 2018 Conference and Expo, 2018: 1.
[62] SUN C, SUN J, WANG Y, et al. Effect of impurity interaction on the corrosion film characteristics and corrosion morphology evolution of X65 steel in water-saturated supercritical CO2 system[J]. International Journal of Greenhouse Gas Control, 2017, 65: 117-127.
[63] HUA Y, BARKER R, NEVILLE A. The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO2 environments[J]. Applied Surface Science, 2015, 356: 499-511.
[64] MAHAFFEY J, ADAM D, BRITTAN A, et al. Corrosion of alloy haynes 230 in high temperature supercritical carbon dioxide with oxygen impurity additions[J]. Oxidation of Metals, 2016, 86(5/6): 567-580.
[65] MAHAFFEY J, ANTHONY S, DAVID A, et al. Effects of CO and O2 impurities on supercritical CO2 corrosion of alloy 625[J]. Metallurgical & Materials Transactions A, 2018, 49: 3703-3714.
[66] BOUHIEDA S, ROUILLARD F, BARNIER V, et al. Selective oxidation of chromium by O2 impurities in CO2 during initial stages of oxidation[J]. Oxidation of Metals, 2013, 80(5/6): 493-503.
[67] DUGSTAD A, HALSEID M, MORLAND B. Testing of CO2 specifications with respect to corrosion and bulk phase reactions[J]. Energy Procedia, 2014, 63: 2547-2556.
[68] 中华人民共和国国家卫生健康委员会. 工作场所有害因素职业接触限值第1部分: 化学有害因素: GBZ 2.1—2019[S]. 北京: 中国标准出版社, 2019: 10-25.
National Health Commission of the People’s Republic of China. Hazardous factors in the workplace occupational exposure limits Part 1: Chemical hazardous factors: GBZ 2.1—2019[S]. Beijing: Standards Press of China, 2019: 10-25.
[69] National Institute for Occupational Safety and Health. NIOSH pocket guide to chemical hazards: No.2005-149[S]. Department of Health and Human Services, Centers for Disease Control and Prevention, 2007: 54-228.
[70] American Conference of Governmental Industrial Hygienists. Guide to occupational exposure values[M]. 3640 Park 42 Drive, Cincinnati, Ohio 45241, ACGIH, 2021: 37-157.
[71] The Japan Society for Occupational Health. Recommen-dation of occupational exposure limits (2020–2021)[J]. Environmental and Occupational Health Practice, 2020, 3(1): 30.
[72] Council of Standards Australia. Pipelines: gas and liquid petroleum part 1: design and construction[M]. GPO Box 476, Sydney, NSW 2001, Australia: SAl Global Limited, 2012: 315.
(责任编辑 刘永强)

相似文献/References:

[1]陈渝楠,张一帆,刘文娟,等.超临界二氧化碳火力发电系统模拟研究[J].热力发电,2017,(2):22.
 CHEN Yunan,ZHANG Yifan,LIU Wenjuan,et al.Simulation study on supercritical carbon dioxide thermal power system[J].Thermal Power Generation,2017,(01):22.
[2]邓成刚,陈宇明,陈 坤,等.50 MW超临界二氧化碳燃煤电厂热经济性分析[J].热力发电,2021,50(12):160.[doi:10.19666/j.rlfd.202106108 ]
 DENG Chenggang,CHEN Yuming,CHEN Kun,et al.Thermoeconomic analysis for 50 MW supercritical carbon dioxide coal-fired power plant[J].Thermal Power Generation,2021,50(01):160.[doi:10.19666/j.rlfd.202106108 ]
[3]吴佐莲,张一帆,张 纯,等.煤基超临界二氧化碳热电联产机组调峰能力研究[J].热力发电,2018,(6):29.[doi:10.19666/j.rlfd.201802067 ]
 WU Zuolian,ZHANG Yifan,ZHANG Chun,et al.Study on peak regulation capacity of a coal-fired supercritical carbon dioxide cogeneration unit[J].Thermal Power Generation,2018,(01):29.[doi:10.19666/j.rlfd.201802067 ]
[4]郑华雷,吴雪蓓,刘 斌.超临界二氧化碳闭式循环性能仿真研究及应用[J].热力发电,2020,49(04):63.[doi:10.19666/j.rlfd.201909248 ]
 ZHENG Hualei,WU Xuebei,LIU Bin.Study and application of performance simulation of supercritical CO2 closed cycles[J].Thermal Power Generation,2020,49(01):63.[doi:10.19666/j.rlfd.201909248 ]
[5]肖 博,朱忠亮,李瑞涛,等.超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展[J].热力发电,2020,49(10):30.[doi:10.19666/j.rlfd.202006155 ]
 XIAO Bo,ZHU Zhongliang,LI Ruitao,et al.Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid[J].Thermal Power Generation,2020,49(01):30.[doi:10.19666/j.rlfd.202006155 ]
[6]刘建峰,桑丽霞,王凯音,等.超临界二氧化碳太阳能热发电系统中集热蓄热颗粒及其性质研究现状[J].热力发电,2020,49(10):38.[doi:10.19666/j.rlfd.202006174 ]
 LIU Jianfeng,SANG Lixia,WANG Kaiyin,et al.Research status of properties of particles as thermal energy storage medium in supercritical carbon dioxide cycle for concentrated solar power[J].Thermal Power Generation,2020,49(01):38.[doi:10.19666/j.rlfd.202006174 ]
[7]张蓉芳,赵民富,王晓丁,等.钠冷快堆耦合超临界二氧化碳布雷顿循环中的PCHE研究进展[J].热力发电,2020,49(10):48.[doi:10.19666/j.rlfd.202006176 ]
 ZHANG Rongfang,ZHAO Minfu,WANG Xiaoding,et al.Study on PCHE in advances sodium cold fast reactor coupled supercritical carbon dioxide Brayton cycle: a review[J].Thermal Power Generation,2020,49(01):48.[doi:10.19666/j.rlfd.202006176 ]
[8]应祺煜,诸葛伟林,张扬军,等.多级轴流S-CO2透平气动设计及仿真分析[J].热力发电,2020,49(8):1.[doi:10.19666/j.rlfd.202004180]
 YING Qiyu,ZHUGE Weilin,ZHANG Yangjun,et al.Aerodynamic design and numerical analysis of a multi-stage axial S-CO2 turbine[J].Thermal Power Generation,2020,49(01):1.[doi:10.19666/j.rlfd.202004180]
[9]朱玉铭,姜玉雁,梁世强,等.超临界二氧化碳布雷顿发电循环压缩机实验研究进展[J].热力发电,2020,49(10):11.[doi:10.19666/j.rlfd.202002046 ]
 ZHU Yuming,JIANG Yuyan,LIANG Shiqiang,et al.Experimental research progress of supercritical carbon dioxide Brayton cycle compressor[J].Thermal Power Generation,2020,49(01):11.[doi:10.19666/j.rlfd.202002046 ]
[10]孙 辉,章立新,杨其国,等.基于GA-BP神经网络的超临界二氧化碳折射率及密度预测[J].热力发电,2020,49(10):59.[doi:10.19666/j.rlfd.202004121 ]
 SUN Hui,ZHANG Lixin,YANG Qiguo,et al.Prediction of refractive index and density of supercritical carbon dioxide based on GA-BP neural network[J].Thermal Power Generation,2020,49(01):59.[doi:10.19666/j.rlfd.202004121 ]

备注/Memo

姜超(1999),男,硕士研究生,主要研究方向为超临界二氧化碳工质品质等技术,20s102099@stu.hit.edu.cn。

更新日期/Last Update: 2021-01-15