[1]余子炎,刘道宽,张富峰,等.旁路蒸发塔氯离子迁移模型及固态蒸发产物利用探讨[J].热力发电,2021,50(10):155-163.[doi:10.19666/j.rlfd.202012297 ]
 YU Ziyan,LIU Daokuan,ZHANG Fufeng,et al.Discussions on chloride ion migration model and solid evaporation products utilization in bypass evaporator[J].Thermal Power Generation,2021,50(10):155-163.[doi:10.19666/j.rlfd.202012297 ]
点击复制

旁路蒸发塔氯离子迁移模型及固态蒸发产物利用探讨

参考文献/References:

[1] 中国电力企业联合会. 2019年全国电力工业统计快报一览表[EB/OL]. (2020-07-15)[2021-12-16]. https:// www. cec. org.cn/upload/1/editor/1579576517375.pdf.
China Electricity Council. 2019 national electric power industry statistics express list[EB/OL]. (2020-07-15)[2021-12-16]. https://www.cec.org.cn/upload/1/editor/ 1579576517375.pdf.
[2] 马双忱, 于伟静, 贾绍广, 等. 燃煤电厂脱硫废水处理技术研究与应用进展[J]. 化工进展, 2016, 35(1): 255-262.
MA Shuangchen, YU Weijing, JIA Shaoguang, et al. Research and application progress of desulfurization wastewater treatment technology in coal-fired power plants[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 255-262.
[3] 张山山, 王仁雷, 晋银佳, 等. 燃煤电厂脱硫废水零排放处理技术研究应用及进展[J]. 华电技术, 2019, 41(12): 25-30.
ZHANG Shanshan, WANG Renlei, JIN Yinjia, et al. Application and development of zero-emission treatment technology for desulphurization waste water from coal-fired power plants[J]. Huadian Technology, 2019, 41(12): 25-30.
[4] 马双忱, 陈嘉宁, 万忠诚, 等. 高盐脱硫废水水泥化固定技术的研究现状与发展[J]. 化工进展, 2019, 38(9): 4275-4283.
MA Shuangchen, CHEN Jianing, WAN Zhongcheng, et al. Research status and development on solidification for high-salt desulfurization wastewater with cement[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4275-4283.
[5] 尹连庆, 徐铮. 氯离子对脱硫石膏脱水影响研究及机理探讨[J]. 粉煤灰, 2008, 20(3): 12-13.
YIN Lianqing, XU Zheng. Study of effect of chlorion on dewater of desuphurized gypsum and probe into its mechanism[J]. Coal Ash China, 2008, 20(3): 12-13.
[6] 靳晓洁. 石灰石-石膏湿法脱硫吸收塔中氯离子问题的探讨[J]. 电力科技与环保, 2013, 29(1): 46-47.
JIN Xiaojie. Research on excessive C1- of absorption tower on limestone-gypsum desulfurization[J]. Electric Power Technology and Environmental Protection, 2013, 29(1): 46-47.
[7] 崔丽, 陈颖敏. 石灰石-石膏湿法脱硫废水的处理[J]. 吉林电力, 2008(2): 16-19.
CUI Li, CHEN Yingmin. Wastewater treatment of limestone-gypsum wet flue gas desulfurization process[J]. Jilin Electric Power, 2008(2): 16-19.
[8] 韦国平. 对火电厂脱硫废水进行单独处理的必要性[J]. 热力发电, 2006, 25(9): 53-54.
WEI Guoping. The necessity of carrying out individual treatment for waste water from desulfuration in thermal power plants[J]. Thermal Power Generation, 2006, 25(9): 53-54.
[9] CHU P. Technical manual: guidance for assessing wastewater impacts of FGD scrubbers, EPRI Report 1013313[R]. Palo Alto, CA: Electric Power Research Institute, 2006: 15.
[10] 刘海洋, 夏怀祥, 江澄宇, 等. 燃煤电厂湿法脱硫废水处理技术研究进展[J]. 环境工程, 2016, 34(1): 31-35.
LIU Haiyang, XIA Huaixiang, JIANG Chengyu, et al. Research advances in wet flue gas desulfurization wastewater treatment technology in coal-fired power plant[J]. Environmental Engineering, 2016, 34(1): 31-35.
[11] 中华人民共和国环境保护部. 关于发布《火电厂污染防治技术政策》的公告: 公告 2017年 第1号[A/OL]. (2017-01-17)[2020-7-15]. http://www.mee.gov.cn/gkml/ hbb/bgg/201701/t20170117_394809.htm.
Ministry of Environmental Protection of People’s Republic of China. Announcement on issuance of Technical Policy on Pollution Control of Thermal Power Plants: GG2017No.1[A/OL]. (2017-01-17)[2020-7-15]. http:// www.mee.gov.cn/gkml/hbb/bgg/201701/t201701 17_394809.htm.
[12] 胡石, 丁绍峰, 樊兆世. 燃煤电厂脱硫废水零排放工艺研究[J]. 洁净煤技术, 2015, 21(2): 129-133.
HU Shi, DING Shaofeng, FAN Zhaoshi. Zero release technology of desulfurization waste water in coal-fired power plant[J]. Clean Coal Technology, 2015, 21(2): 129-133.
[13] 张广文, 孙墨杰, 张蒲璇, 等. 燃煤火力电厂脱硫废水零排放可行性研究[J]. 东北电力大学学报, 2014, 34(5): 87-91.
ZHANG Guangwen, SUN Mojie, ZHANG Puxuan, et al. The study of the feasibility of zero discharge of desulfurization wastewater in coal-fired power plant[J]. Journal of Northeast Dianli University, 2014, 34(5): 87-91.
[14] 张富峰, 刘道宽, 曲保忠, 等. 脱硫废水烟气蒸发技术中的数值模拟研究现状与发展[J]. 华电技术, 2020, 42(3): 8-18.
ZHANG Fufeng, LIU Daokuan, QU Baozhong, et al. Status and progress of numerical simulation in flue gas evaporation technology for desulfurization wastewater[J]. Huadian Technology, 2020, 42(3): 8-18.
[15] 柴晋, 万忠诚, 武凯, 等. 燃煤电厂脱硫废水烟气蒸发技术进展与应用[J]. 洁净煤技术, 2019, 25(2): 25-31.
CHAI Jin, WAN Zhongcheng, WU Kai, et al. Develop-ment and application of flue gas evaporation technology for waste water desulfurization in coal-fired power plants[J]. Clean Coal Technology, 2019, 25(2): 25-31.
[16] MA S C, JIN C, CHEN G D, et al. Research on desulfurization wastewater evaporation: present and future perspectives[J]. Renewable & Sustainable Energy Reviews, 2016, 58(5): 1143-1151.
[17] 张净瑞, 梁海山, 郑煜铭, 等. 基于旁路烟道蒸发的脱硫废水零排放技术在火电厂的应用[J]. 环境工程, 2017, 35(10): 5-9.
ZHANG Jingrui, LIANG Haishan, ZHENG Yuming, et al. Application of zero liquid discharge system of the desulfurization wastewater based on bypass flue evaporation system in thermal power plants[J]. Environmental Engineering, 2017, 35(10): 5-9.
[18] 袁伟中, 刘春红, 童小忠, 等. 燃煤锅炉采用烟气旁路干燥技术实现脱硫废水零排放[J]. 电力科技与环保, 2017, 33(3): 18-21.
YUAN Weizhong, LIU Chunhong, TONG Xiaozhong, et al. Coal-fired boiler flue gas bypass drying technology to achieve zero liquid discharge of desulfurization water[J]. Electric Power Environmental Protection, 2017, 33(3): 18-21.
[19] 贾绍广, 于伟静, 张润盘, 等. 蒸发塔技术用于脱硫废水的处理[J]. 环境工程学报, 2017, 11(4): 2241-2246.
JIA Shaoguang, YU Weijing, ZHANG Runpan, et al. Evaporation tower technology in FGD wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2241-2246.
[20] 马双忱, 于伟静, 贾绍广, 等. 燃煤电厂脱硫废水烟道蒸发产物特性[J]. 动力工程学报, 2016, 36(11): 894-900.
MA Shuangchen, YU Weijing, JIA Shaoguang, et al. Properties of flue duct evaporation products by desulfurization waste water in coal-fired power plants[J]. Journal of Chinese Society of Power Engineering, 2016, 36(11): 894-900.
[21] 崔琳, 沈鲁光, 杨敦峰, 等. 中温烟气蒸发脱硫废水干燥过程及产物特性分析[J]. 煤炭学报, 2017, 42(7): 1877-1883.
CUI Lin, SHEN Luguang, YANG Dunfeng, et al. Drying properties and product characteristics of desulfurization wastewater evaporation by medium-temperature flue gas[J]. Journal of China Coal Society, 2017, 42(7): 1877-1883.
[22] 陈武, 王凯亮, 罗天翔, 等. 脱硫废水旋转雾化及其干燥蒸发特性试验研究[J]. 中国电机工程学报, 2019, 39(11): 3295-3303.
CHEN Wu, WANG Kailiang, LUO Tianxiang, et al. Study on rotating spray atomization and drying evaporation characteristics of desulfurization wastewater[J]. Proceedings of the CSEE, 2019, 39(11): 3295-3303.
[23] 张梦泽. 氯化钙添加促进燃煤烟气汞形态转化的试验研究[D]. 济南: 山东大学, 2014: 2.
ZHANG Mengze. Experimental study on the addition of calcium chloride promoting the mercury transformation of coal flue gas[D]. Jinan: Shandong University, 2014: 2.
[24] 李通风, 李成贤, 哈权章, 等. 氯化镁水合物脱水制取无水氯化镁的理论研究[J]. 化工管理, 2016(2): 111.
LI Tongfeng, LI Chengxian, HA Quanzhang, et al. Theoretical study on the dehydration of magnesium chloride hydrate to produce anhydrous magnesium chloride[J]. Chemical Enterprise Management, 2016(2): 111.
[25] 陈新民, 张平民, 叶大陆. 氯化镁水合物热分解的综合研究[J]. 中南矿冶学院学报, 1979(1): 15-26.
CHEN Xinmin, ZHANG Pingmin, YE Dalu. Comprehensive study on the thermal decomposition of magnesium chloride hydrate[J]. Journal of Central South University of Mining and Metallurgy, 1979(1): 15-26.
[26] 周正. 脱硫废水雾化特性及HCl蒸发释放规律研究[D]. 南京: 东南大学, 2018: 13.
ZHOU Zheng. Study on atomization characteristics of desulfurization waste water and evaporation release law of HCl[D]. Nanjing: Southeast University, 2018: 13.
[27] 王维娜, 董浩. 浅谈粉煤灰性质及资源化利用现状[J]. 河套学院学报, 2014, 11(1): 66-71.
WANG Weina, DONG Hao. Talking about the properties of fly ash and the status quo of resource utilization[J]. Journal of Hetao University, 2014, 11(1): 66-71.
[28] SHAO D, HUTCHINSON E J, CAO H, et al. Behavior of chlorine during coal pyrolysis[J]. Energy Fuels, 1994, 8(2): 399-401.
[29] 李寒旭. TGA-FTIR联合技术对煤燃烧过程中氯的析出特征研究[J]. 煤炭转化, 1996, 19(3): 40-50.
LI Hanxu. Study on the characteristics of chlorine release during coal combustion by TGA-FTIR combined technology[J]. Coal Conversion, 1996, 19(3): 40-50.
[30] TAKEDA M, UEDA A, HASHIMOTO H, et al. Fate of the chlorine and fluorine in a sub-bituminous coal during pyrolysis and gasification[J]. Fuel, 2006, 85(2): 235-242.
[31] GORDILLO M D, BLANCO M A, PEREYRA C, et al. Thermodynamic modelling of supercritical fluid-solid phase equilibrium data[J]. Computers & Chemical Engineering, 2005, 29(9): 1885-1890.
[32] LAZZ?S J A, RIVERA M. Gas-solid phase equilibrium of biosubstances by two biological algorithms[J]. Revista Mexicana De Física, 2013, 59(6): 577-583.
[33] LIANG B R, SONG C Y, QIAN J, et al. Study of the desulfurization process and gas-solid-liquid phase distribution under the complex humidification conditions in dense tower[J]. Journal of Environmental Protection, 2012, 3(4): 334-339.
[34] STOREY J M E, LUO W, ISABELLE L M, et al. Gas/solid partitioning of semivolatile organic compounds to model atmospheric solid surfaces as a function of relative humidity. 1. Clean quartz[J]. Environmental Sicence & Technology, 1995, 29(9): 2420-2428.
[35] TSIDILKOVSKII V I, LEONIDOV I A, LAKHTIN A A, et al. High-temperature equilibrium between high-Tc oxide and gas phase[J]. Physica Status Solidi (b), 2010, 163(1): 231-240.
[36] SIMONSON J M, PALMER D A. Liquid-vapor partitioning of HCl(aq) to 350℃[J]. Geochimica Et Cosmochimica Acta, 1993, 57(1): 1-7.
[37] SIMONSON J M, PALMER D A. Vapor-liquid partitioning of HCI in acidic NaCl brines at high temperatures[J]. GeothermResourCounc Trans, 1998, 22: 20-23.
[38] GRUSZKIEWICZ M S, ARSHALL S L, PALMER D A. The partitioning of acetic, formic, and phosphoric acids between liquid water and steam[R]. Office of Scientific Technical Information Technical Reports, 1999: 1-11.
[39] GUSZKIEWICZ M S, JOYCE D B, MARSHALL S L. The partitioning of acetate, formate and phosphates around the water/steam cycle[R]. Office of Scientific Technical Information Technical Reports, 2000: 1-25.
[40] RAJAKOVI-OGNJANOVI V N, IVOJINOVIC D Z, GRGUR B N, et al. Improvement of chemical control in the water-steam cycle of thermal power plants[J]. Applied Thermal Engineering, 2011, 31(1): 119-128.
[41] BAHADORI A, VUTHALURU H B. Prediction of silica carry-over and solubility in steam of boilers using simple correlation[J]. Applied Thermal Engineering, 2010, 30(2/3): 250-253.
[42] MA S, CHAI J, CHEN G, et al. Partitioning characteristic of chlorine ion in gas and solid phases in process of desulfurization wastewater evaporation: model development and calculation[J]. Environmental Science and Pollution Research, 2019, 26: 8257-8265.
[43] SCHMIDT G, WENZEL H. A modified van der Waals type equation of state[J]. Chemical Engineering Science, 1980, 35(7): 1503-1512.
[44] NHU N V, DEITERS U K. Application of a generalized van der Waals equation of state to several nonpolar mixtures[J]. Fluid Phase Equilibria, 1996, 118(2): 153-174.
[45] 田维. 高温烟气过滤陶瓷的制备与性能[D]. 广州: 华南理工大学, 2011: 16-19.
TIAN Wei. Preparation and performance of high-temperature flue gas filtering ceramics[D]. Guangzhou: South China University of Technology, 2011: 16-19.
[46] 牛俊粉. 脱硫除尘一体化多孔陶瓷的制备与表征[D]. 淄博: 山东理工大学, 2008: 25-26.
NIU Junfen. Preparation and characterization of integrated porous ceramics for desulfurization and dust removal[D]. Zibo: Shandong University of Technology, 2008: 25-26.
[47] 原辉. 1 000 MW机组电除尘器内部流场优化及除尘效率数值模拟研究[D]. 北京: 华北电力大学, 2019: 1-6.
YUAN Hui. Research on the optimization of internal flow field and numerical simulation of dust removal efficiency of the electrostatic precipitator of 1 000 MW unit[D]. Beijing: North China Electric Power University, 2019: 1-6.
[48] 李冬燕, 魏巍, 韩峰. 高温除尘碳化硅膜的制备及其抗腐蚀特性[J]. 化工学报, 2019, 70(1): 336-344.
LI Dongyan, WEI Wei, HAN Feng. Preparation of silicon carbide film for high temperature dust removal and its anti-corrosion characteristics[J]. CIESC Journal, 2019, 70(1): 336-344.
[49] 任祥军. 多孔陶瓷膜材料的研制及在气固分离中的应用研究[D]. 合肥: 中国科学技术大学, 2005: 1-12.
REN Xiangjun. Development of porous ceramic membrane material and its application in gas-solid separation[D]. Hefei: University of Science and Technology of China, 2005: 1-12.
[50] 刘文永, 付海明. 高掺量粉煤灰固结材料[M]. 北京: 中国建材工业出版社, 2007: 5.
LIU Wenyong, FU Haiming. Consolidated material with high content of fly ash[M]. Beijing: China Building Materials Industry Press, 2007: 5.
[51] 任倩. 粉煤灰特性分析及资源化利用评价[D]. 成都: 西南交通大学, 2012: 1-9.
REN Qian. Characteristic analysis and resource utilization evaluation of fly ash[D]. Chengdu: Southwest Jiaotong University, 2012: 1-9.
[52] 吴元锋, 仪桂云, 刘全润, 等. 粉煤灰综合利用现状[J]. 洁净煤技术, 2013, 19(6): 100-104.
WU Yuanfeng, YI Guiyun, LIU Quanrun, et al. Current status of comprehensive utilization of fly ash[J]. Clean Coal Technology, 2013, 19(6): 100-104.
[53] 王亮. 粉煤灰综合利用研究[D]. 天津: 天津大学, 2007: 1-14.
WANG Liang. Study on comprehensive utilization of fly ash[D]. Tianjin: Tianjin University, 2007: 1-14.
[54] 张祥成, 孟永彪. 浅析中国粉煤灰的综合利用现状[J]. 无机盐工业, 2020, 52(2): 1-5.
ZHANG Xiangcheng, MENG Yongbiao. Brief analysis on present situation of comprehensive utilization of fly ash in China[J]. Inorganic Chemicals Industry, 2020, 52(2): 1-5.
[55] 刘彬, 宋萌, 田野. 浅谈粉煤灰的综合利用[J]. 中国高新技术企业, 2009(10): 126-127.
LIU Bin, SONG Meng, TIAN Ye. Talking about the comprehensive utilization of fly ash[J]. China High Technology Enterprises, 2009(10): 126-127.
[56] 郭伟. 高掺量粉煤灰烧结砖的研制[D]. 南京: 南京化工大学, 2000: 1-20.
GUO Wei. Development of high-volume fly ash sintered brick[D]. Nanjing: Nanjing University of Chemical Technology, 2000: 1-20.
[57] 江嘉运. 高掺量粉煤灰烧结砖的原料制备工艺[J]. 新型建筑材料, 2007, 34(1): 12-15.
JIANG Jiayun. The raw material preparation process of high-volume fly ash fired brick[J]. New Building Materials, 2007, 34(1): 12-15.
[58] 闫开放. 高掺量粉煤灰烧结砖有关问题的分析[J]. 砖瓦, 2003(5): 5-8.
YAN Kaifang. Analysis on fired brick with high fly ash additives[J]. Brick-tile, 2003(5): 5-8.
[59] 胡普华, 张高展. 高掺量粉煤灰轻质节能免烧砖的研制[J]. 硅酸盐通报, 2012, 31(4): 984-987.
HU Puhua, ZHANG Gaozhan. Research on lightweight energy-saving unburned brick with large mixed fly ash[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(4): 984-987.
[60] 潘素瑛, 恽怀顺, 牟善斌, 等. 粉煤灰免烧砖工艺及性能[J]. 粉煤灰综合利用, 1997(3): 86-87.
PAN Suying, YUN Huaishun, MOU Shanbin, et al. Process and performance of fly ash non-burning bricks[J]. Comprehensive Utilization of Fly Ash, 1997(3): 86-87.
[61] 孟宪彬. 燃煤电厂粉煤灰在矿井回填中的综合利用分析[J]. 电力科技与环保, 2017, 33(1): 40-42.
MENG Xianbin. Analysis of ash and slag’s comprehensive utilization of coal-fired power plant in backfilled of mine[J]. Electric Power Environmental Protection, 2017, 33(1): 40-42.
[62] 李艳磊. 液态粉煤灰台背回填施工应用分析[J]. 交通世界(上旬刊), 2018(13): 60-61.
LI Yanlei. Analysis on the application of liquid fly ash backfill construction[J]. Transpo World, 2018(13): 60-61.
[63] 李江. 液态粉煤灰在桥梁台背回填中的应用[J]. 交通世界(上旬刊), 2018(10): 96-97.
LI Jiang. Application of liquid fly ash in backfilling of bridge abutment[J]. Transpo World, 2018(10): 96-97.
[64] 霍轶珍, 黄晓明. 轻质固化粉煤灰回填软土地基路堤工后沉降分析[J]. 交通标准化, 2009(7): 51-55.
HUO Yizhen, HUANG Xiaoming. Settlement analysis of softground embankment with fly-ash solidified filler[J]. Transport Standardization, 2009(7): 51-55.
[65] 潘钟. 粉煤灰资源化利用评价与案例研究[D]. 厦门: 厦门大学, 2008: 1-9.
PAN Zhong. Evaluation and case study on resource utilization of fly ash[D]. Xiamen: Xiamen University, 2008: 1-9.
[66] 李巧云, 陈文瑞, 黄修行. 浅析国内外火电厂粉煤灰的综合利用现状[J]. 红水河, 2019, 38(6): 46-50.
LI Qiaoyun, CHEN Wenrui, HUANG Xiuxing. Analysis on the comprehensive utilization status of fly ash in thermal power plants at home and abroad[J]. Hongshui River, 2019, 38(6): 46-50.
(责任编辑 杨嘉蕾)

相似文献/References:

[1]吕武学,邱明杰,于燕飞,等.燃煤电厂脱硫废水零排放母液制备净水剂新工艺分析[J].热力发电,2021,50(04):97.[doi:10.19666/j.rlfd.202005154 ]
 LYU Wuxue,QIU Mingjie,YU Yanfei,et al.Preparation of water purifying agent by using zero discharge mother liquid of FGD in coal-fired power plants[J].Thermal Power Generation,2021,50(10):97.[doi:10.19666/j.rlfd.202005154 ]

备注/Memo

余子炎(1969),男,高级工程师,主要从事电力环保、电力化学相关工作,ydsw_yzy@163.com。

更新日期/Last Update: 2021-10-15