[1]陈得胜,白新奎,张振民,等.基于人工神经网络和遗传算法的动叶可调轴流风机后导叶数值优化[J].热力发电,2021,50(10):142-149.[doi:10.19666/j.rlfd.202012306 ]
 CHEN Desheng,BAI Xinkui,ZHANG Zhenmin,et al.Numerical optimization for outlet guide vane of an adjustable rotor blade axial fan based on artificial neural network and genetic algorithm[J].Thermal Power Generation,2021,50(10):142-149.[doi:10.19666/j.rlfd.202012306 ]
点击复制

基于人工神经网络和遗传算法的动叶可调轴流风机后导叶数值优化

参考文献/References:

[1] 昌泽舟. 轴流式通风机实用技术[M]. 北京: 机械工业出版社, 2005: 70-71.
CHANG Zezhou. Practical technology of axial fan[M]. Beijing: China Machine Press, 2005: 70-71.
[2] GRAF M B, GREITZER E M, MARBLE F E, et al. Effects of stator pressure field on upstream rotor performance[C]. ASME International Gas Turbine & Aeroengine Congress & Exhibition. American Society of Mechanical Engineers, June 7-10, 1999, Indianapolis, Indiana, USA: ASME, 99-GT-099.
[3] 邓向阳, 张宏武, 黄伟光. 低速轴流压气机中前后静叶对动叶顶部区域流动的影响[J]. 航空学报, 2005, 26(5): 535-539.
DENG Xiangyang, ZHANG Hongwu, HUANG Weiguang. Effects of upstream and downstream stators on rotor tip flow in a low-speed axial compressor[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(5): 535-539.
[4] VASILOPOULOS I, FLASSIG P, MEYER M. CAD-based aero-dynamic optimization of a compressor stator using conventional and adjoint-driven approaches[C]. ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, June 26-30, 2017, Charlotte, North Carolina, USA: ASME, 2017: GT2017-63199.
[5] 刘波, 宣扬, 陈云永. 基于人工神经网络的静子叶片优化设计[J]. 推进技术, 2009, 30(5): 576-580.
LIU Bo, XUAN Yang, CHEN Yunyong. Stator optimization using artificial neural network[J]. Journal of Propulsion Technology, 2009, 30(5): 576-580.
[6] ALFREDO A M, COELLO C A, EFREN M M. Multiobjective evolutionary algorithms in aeronautical and aerospace engineering[J]. IEEE Transactions on Evolutionary Computation, 2012, 16(5): 662-694.
[7] COELLO M R G, ALMEIDA P E M, SIM?ES M G. A comprehensive review for industrial applicability of artificial neural networks[J]. IEEE Transactions on Industrial Electronics, 2003, 50(3): 585-601.
[8] 乐健, 周谦, 王曹, 等. 无功补偿设备和分布式电源协同的配电网优化控制策略研究[J]. 电力系统保护与控制, 2020, 48(18): 38-47.
LE Jian, ZHOU Qian, WANG Cao, et al. Research on distributed optimal control strategy for a distribution network based on the cooperation of DGs and Var compensators[J]. Power System Protection and Control, 2020, 48(18): 38-47.
[9] UELSCHEN M, LAWERENZ M. Design of axial com-pressor airfoils with artificial neural networks and genetic algorithms[C]. American Institute of Aeronautics and Astronautics, Fluids 2000, Denver, CO, 2000 June 19-22.
[10] 王昊昊, 徐泰山, 马彦宏, 等. 计及多类型电源协调的有功控制策略[J]. 电力系统保护与控制, 2019, 47(4): 167-175.
WANG Haohao, XU Taishan, MA Yanhong, et al. A novel active power control strategy considering multi-resource coordination[J]. Power System Protection and Control, 2019, 47(4): 167-175.
[11] LU H N, LI Q S, PAN T Y. Optimization of cantilevered stators in an industrial multistage compressor to improve efficiency[J]. Energy, 2016, 106: 590-601.
[12] 朱翰超, 马蕊. 考虑需求侧管理的冷热电联供微电网优化配置方法[J]. 电力系统保护与控制, 2019, 47(2): 139-146.
ZHU Hanchao, MA Rui. Optimal configuration method of CCHP microgrid considering demand side management[J]. Power System Protection and Control, 2019, 47(2): 139-146.
[13] LI B, GU C W, LI X T, et al. Numerical optimization for stator vane settings of multi-stage compressors based on neural networks and genetic algorithms[J]. Aerospace Science and Technology, 2016, 52: 81-94.
[14] 李利娟, 吴军, 刘红良, 等. 计及新能源影响静动态结合的电网脆弱节点辨识[J]. 电力系统保护与控制, 2019, 47(2): 64-72.
LI Lijuan, WU Jun, LIU Hongliang, et al. Static and dynamic integration method on identifying vulnerability nodes considering new energy power[J]. Power System Protection and Control, 2019, 47(2): 64-72.
[15] 陈得胜, 魏萌, 闫宏, 等. 后导叶安装角对动调轴流风机性能影响研究[J]. 热力发电, 2020, 49(12): 120-127.
CHEN Desheng, WEI Meng, YAN Hong, et al. Numerical and experimental study on the influence of stagger angle of outlet guide vane on the performance of an adjustable rotor blade axial fan[J]. Thermal Power Generation, 2020, 49(12): 120-127.
(责任编辑 杜亚勤)

相似文献/References:

[1]徐创学,张 心,康爱军.基于人工神经网络数据挖掘技术进行煤灰结渣特性分析[J].热力发电,2004,(06):0.
[2]苏 伟,陈 刚.应用人工神经网络方法处理电厂入厂煤煤质分析数据[J].热力发电,2000,(04):0.
[3]张玉杰,吴平林,路昌明.基于数字图像处理和神经网络的炉膛温度场测量及燃烧诊断方法的研究[J].热力发电,2004,(07):0.
[4]王建国,汪勇华.基于灰色神经网络的凝汽器水侧清洁系数预测[J].热力发电,2013,(09):95.
 WANG Jianguo,WANG Yonghua.Gray neural network based prediction of water side clean coefficient of the condenser tubes[J].Thermal Power Generation,2013,(10):95.
[5]吴恒运,高 林,田建勇,等.基于非对称神经网络结构的电站锅炉 智能燃烧控制模型[J].热力发电,2017,(12):6.
 WU Hengyun,GAO Lin,TIAN Jianyong,et al.Intelligent combustion control model for utility boilers based on asymmetric artificial neural networks[J].Thermal Power Generation,2017,(10):6.
[6]李 伟,徐 强,孔德安,等.电站锅炉SCR脱硝系统联合运行优化模型[J].热力发电,2019,(06):46.[doi:10.19666/j.rlfd.201812221 ]
 LI Wei,XU Qiang,KONG Dean,et al.Optimization model for combined operation of SCR denitration system in utility boiler[J].Thermal Power Generation,2019,(10):46.[doi:10.19666/j.rlfd.201812221 ]

备注/Memo

陈得胜(1987),男,硕士,高级工程师,主要研究方向为电站风机优化,chendesheng@tpri.com.cn。

更新日期/Last Update: 2021-10-15