[1]刘 君,邓 毅,杨延西,等.基于条件生成对抗网络的空气预热器内红外补光监测视频图像清晰化方法[J].热力发电,2021,50(10):130-134.[doi:10.19666/j.rlfd.202103076 ]
 LIU Jun,DEND Yi,YANG Yanxi,et al.Method for sharpening infrared compensation image for monitoring video inside air preheater based on cGAN network[J].Thermal Power Generation,2021,50(10):130-134.[doi:10.19666/j.rlfd.202103076 ]
点击复制

基于条件生成对抗网络的空气预热器内红外补光监测视频图像清晰化方法

参考文献/References:

[1] 樊泉桂. 锅炉原理[M]. 北京: 中国电力出版社, 2008: 31-50.
FAN Quangui. Principles of boiler[M]. Beijing: China Electric Power Press, 2008: 31-50.
[2] LAI W S, HUANG J B, AHUJA N, et al. Fast and accurate image super-resolution with deep laplacian pyramid networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2599-2613.
[3] TAI Y, YANG J, LIU X. Image super-resolution via deep recursive residual network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii: IEEE, 2017.
[4] ZHANG K, ZUO W, GU S, et al. Learning deep CNN denoiser prior for image restoration[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii: IEEE, 2017.
[5] TAI Y, YANG J, LIU X, et al. MemNet: a persistent memory network for image restoration[C]. 2017 IEEE International Conference on Computer Vision (ICCV). Italy: IEEE Computer Society, 2017.
[6] LI S M, FAN R, LEI G Q, et al. A two-channel convolu-tional neural network for image super-resolution[J]. Neurocomputing, 2017, 275(31): 267-277.
[7] 南方哲, 钱育蓉, 行艳妮, 等. 基于深度学习的单图像超分辨率重建研究综述[J]. 计算机应用研究, 2020, 37(2): 321-326.
NAN Fangzhe, QIAN Yurong, XING Yanni, et al. Survey of single image super resolution based on deep learning[J]. Application Research of Computers, 2020, 37(2): 321-326.
[8] DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]. 2014 European Conference on Computer Vision (ECCV). Switzerland: IEEE, 2014.
[9] KIM J, LEE J K. Accurate image super-resolution using very deep convolutional networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016.
[10] GOODFELLOW I, POUGET-ABADIE J, MIRZE M, et al. Generative adversarial nets[C]. 2014 Conference and Workshop on Neural Information Processing Systems (NIPS). Montreal: NIPS, 2014.
[11] IOFFE S, SZEGEDY C. Batch normalization: accele-rating deep network training by reducing internal covariate shift[C]//ICML’15: Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015, 37: 448-456.
[12] ZHANG D, SHAO J, HU G, et al. Sharp and real image super-resolution using generative adversarial network[C]. 2017 International Conference on Neural Information Processing(ICONIP). Guangzhou: IEEE, 2017.
[13] 李方彪, 何昕, 魏仲慧, 等. 生成式对抗神经网络的多帧红外图像超分辨率重建[J]. 红外与激光工程, 2018, 47(2): 26-33.
LI Fangbiao, HE Xin, WEI Zhognhui, et al. Multi-frame infrared image super-resolution reconstruction based on generative adversarial neural network[J]. Infrared and Laser Engineering, 2018, 47(2): 26-33.
[14] ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]. 2018 European Conference on Computer Vision (ECCV). Munich: IEEE, 2018.
[15] 张晓阳, 李广泽, 彭畅, 等. 基于深度卷积网络的红外遥感图像超分辨率重建[J]. 黑龙江大学自然科学学报, 2018, 35(4): 99-103.
ZHANG Xiaoyang, LI Guangze, PENG Chang, et al. Super-resolution reconstruction of infrared remote sensing image based on deep convolutional network[J]. Journal of Natural Science of Heilongjiang University, 2018, 35(4): 99-103.
[16] 贠保记, 白森珂, 张国. 基于混沌自适应粒子群算法的冷热电联供系统优化[J]. 电力系统保护与控制, 2020, 48(10): 123-130.
YUN Baoji, BAI Senke, ZHANG Guo. Optimization of CCHP system based on a chaos adaptive particle swarm optimization algorithm[J]. Power System Protection and Control, 2020, 48(10): 123-130.
[17] 郑中原, 赵鹏, 姜玲, 等. 基于云平台的发电机组节能减排实时监控系统[J]. 电力系统保护与控制, 2019, 47(7): 148-154.
ZHENG Zhongyuan, ZHAO Peng, JIANG Ling, et al. A real-time monitoring and control system for energy saving and emission reduction of generator set based on cloud platform[J]. Power System Protection and Control, 2019, 47(7): 148-154.
[18] KAROL G, KATARZYNA P. Diagnostic methods of detecting defects within the material with the use of active infrared thermovision[J]. Archives of Mechanical Technology and Materials, 2017, 37(1): 41-44.
[19] 李利娟, 吴军, 刘红良, 等. 计及新能源影响静动态结合的电网脆弱节点辨识[J]. 电力系统保护与控制, 2019, 47(2): 64-72.
LI Lijuan, WU Jun, LIU Hongliang, et al. Static and dynamic integration method on identifying vulnerability nodes considering new energy power[J]. Power System Protection and Control, 2019, 47(2): 64-72.
[20] 徐玉琴, 方楠. 基于稳压控制的独立光储微电网控制策略研究及仿真分析[J]. 电力系统保护与控制, 2020, 48(21): 67-74.
XU Yuqin, FANG Nan. Control strategy research and simulation analysis of an independent optical storage microgrid based on voltage stabilizing control[J]. Power System Protection and Control, 2020, 48(21): 67-74.
(责任编辑 杜亚勤)

相似文献/References:

[1]席广辉,张 俊.锅炉空气预热器柔性接触式密封改造[J].热力发电,2009,(08):73.
 XI Guang-hui,ZHANG Jun.RETROFITTING AIR PREHEATER OF BOILER TO ADOPT CONTACTING TYPE FLEXIBLE SEAL[J].Thermal Power Generation,2009,(10):73.
[2]匡国强,徐党旗.选择性催化还原(SCR)脱硝装置对锅炉结构的影响[J].热力发电,2006,(10):0.
[3]陆国栋,周强泰,俞小莉.空气横掠顺列螺旋槽管管束的试验研究[J].热力发电,2005,(09):0.
[4]陈士星,夏崇军,陈乃江,等.LBR激波吹灰器在菏泽发电厂2号炉上的应用[J].热力发电,2004,(12):0.
[5]周宏亮,陈永明.29-VI(T)1780型空气预热器离合器翻板原因分析及其起动回路改造[J].热力发电,2005,(05):0.
[6]韩东太,安雪忠,汪玉萍.捷制500MW机组空气预热器改造[J].热力发电,2004,(05):0.
[7]倪云峰.一种基于自适应模式的空气预热器漏风控制方法[J].热力发电,2004,(06):0.
[8]张 毅,孙学信.开封火电厂3号炉尾部受热面改造[J].热力发电,2003,(02):0.
[9]李文远,刘 石,邵瑞虎.燃气脉冲激波吹灰器在670 t/h炉空气预热器上的应用[J].热力发电,2003,(03):0.
[10]李志才,逯宝顺,朴尚豪,等.国产100 MW机组综合节能改造[J].热力发电,2002,(03):0.

备注/Memo

刘君(1982),男,硕士,高级工程师,主要研究方向为电站锅炉,793323814@qq.com。

更新日期/Last Update: 2021-10-15