[1]谭增强,牛国平,王一坤,等.生物质直燃发电大气污染物超低排放技术路线分析[J].热力发电,2021,50(10):101-107.[doi:10.19666/j.rlfd.202103074 ]
 TAN Zengqiang,NIU Guoping,WANG Yikun,et al.Analysis of technical route for ultra-low emission of air pollutants in biomass direct-fired power plants[J].Thermal Power Generation,2021,50(10):101-107.[doi:10.19666/j.rlfd.202103074 ]
点击复制

生物质直燃发电大气污染物超低排放技术路线分析

参考文献/References:

[1] 武文璇, 李寒松, 李青, 等. 生物质锅炉的发展现状及农业中的应用[J]. 农业装备与车辆工程, 2018, 56(3): 81-84.
WU Wenxuan, LI Hansong, LI Qing, et al. Development status of biomass boiler and its application in agriculture[J]. Agricultural Equipment & Vehicle Engineering, 2018, 56(3): 81-84.
[2] 舒振杨. 小型秸秆生物质成型燃料锅炉结构设计研 究[D]. 长春: 吉林大学, 2017: 1-4.
SHU Zhenyang. Structure design of small straw biomass briquette boiler[D]. Changchun: Jilin University, 2017: 1-4.
[3] 樊静丽, 李佳, 晏水平, 等. 我国生物质能-碳捕集与封存技术应用潜力分析[J]. 热力发电, 2021, 50(1): 7-17.
FAN Jingli, LI Jia, YAN Shuiping, et al. Application potential analysis for bioenergy carbon capture and storage technology in China[J]. Thermal Power Genera-tion, 2021, 50(1): 7-17.
[4] 方平, 唐子君, 黄建航, 等. 生物质锅炉烟气污染物排放特性及其控制对策[J]. 环境科学与技术, 2016, 39(10): 155-160.
FANG Ping, TANG Zijun, HUANG Jianhang, et al. Emission characteristics of flue gas pollutants emitted from biomass boilers and its control strategies[J]. Environmental Science & Technology, 2016, 39(10): 155-160.
[5] 孙克勤, 钟秦, 于爱华, 等. SCR催化剂的碱金属中毒研究[J]. 中国环保产业, 2007(7): 30-32.
SUN Keqin, ZHONG Qin, YU Aihua, et al. Toxic study of alkali metals on SCR catalyzer[J]. China Environ-mental Protection Industry, 2007(7): 30-32.
[6] 云端, 宋蔷, 姚强. V2O5-WO3/TiO2 SCR催化剂的失活机理及分析[J]. 煤炭转化, 2009, 32(1): 91-96.
YUN Duan, SONG Qiang, YAO Qiang. Mechanism and analysis of SCR catalyst deactivation[J]. Coal Conversion, 2009, 32(1): 91-96.
[7] 付鹏. 典型生物质气化特性的实验研究与模拟[D]. 武汉: 华中科技大学, 2006: 45-46.
FU Peng. Experimental study and simulation of typical biomass gasification characteristics[D]. Wuhan: Huazhong University of Science and Technology, 2006: 45-46.
[8] 米铁. 生物质气化过程的综合实验研究[D]. 武汉: 华中科技大学, 2002: 35-40.
MI Tie. Comprehensive experimental study on biomass gasification process[D]. Wuhan: Huazhong University of Science and Technology, 2002: 35-40.
[9] VASSILEV S V, BAXTER D, ANDERSEN L K, et al. An overview of the chemical composition of biomass[J]. Fuel, 2010, 89(5): 913-933.
[10] YU C, QIN J, NIE H, et al. Experimental research on agglomeration in straw-fired fluidized beds[J]. Applied Energy, 2011, 88(12): 4534-4543.
[11]NIELSEN H P, FRANDSEN F J, DAM-JOHANSEN K, et al. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers[J]. Progress in Energy and Combustion Science, 2000, 26(3): 283-298.
[12] 徐婧. 生物质燃烧过程中碱金属析出的实验研究[D]. 杭州: 浙江大学, 2006: 15-19.
XU Jing. Experimental study on alkali metal precipitation during biomass combustion[D]. Hangzhou: Zhejiang University, 2006: 15-19.
[13] 蒋育澄, 高世扬, 夏树屏. 痕量碱金属快速连续分析方法评述[J]. 理化检验(化学分册), 2003, 39(12): 743-747.
JIANG Yucheng, GAO Shiyang, XIA Shuping. Recent progress of rapid and continuous analysis of trace amounts of alkali metals[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2003, 39(12): 743-747.
[14] 吕泽康, 龙慎伟, 李冠兵, 等. 生物质锅炉氯腐蚀的密度泛函理论研究[J]. 化工学报, 2019, 70(11): 4370-4376.
LYU Zekang, LONG Shenwei, LI Guanbing, et al. Density functional theory study on chlorine corrosion of biomass furnacer[J]. CIESC Journal, 2019, 70(11): 4370-4376.
[15] 叶江明. 电厂锅炉原理及设备[M]. 北京: 中国电力出版社, 2004: 25-30.
YE Jiangming. Principle and equipment of power plant boiler[M]. Beijing: China Electric Power Press, 2004: 25-30.
[16] 卢泓樾. 燃煤机组烟气污染物超低排放研究[J]. 电力科技与环保, 2014, 30(5): 8-11.
LU Hongyue. Research of the domestic 600 MW supercritical coal-fired units ultra in low emissions of flue gas[J]. Electric Power Environmental Protection, 2014, 30(5): 8-11.
[17] 杨用龙, 苏秋风, 王丰吉, 等. 一体化技术处理脱硫中毒浆液[J]. 华电技术, 2015, 37(5): 70-80.
YANG Yonglong, SU Qiufeng, WANG Fengji, et al. Integrated technology for treatment of desulfurization poisoning slurry[J]. Huadian Technology, 2015, 37(5): 70-80.
[18] 段传和, 夏怀详. 选择性非催化还原法(SNCR)烟气脱硝[M]. 北京: 中国电力出版社, 2012: 45-50.
DUAN Chuanhe, XIA Huaixiang. Selective non-catalytic reduction (SNCR) for flue gas denitration[M]. Beijing: China Electric Power Press, 2012: 45-50.
[19] 陈镇超. 基于尿素还原剂的选择非催化还原高效脱硝技术的实验研究[D]. 杭州: 浙江大学, 2012: 53-69.
CHEN Zhenchao. Experimental study on selective non catalytic reduction of NOx based on urea reductant[D]. Hangzhou: Zhejiang University, 2012: 53-69.
[20] 李廉明, 李秋萍, 俞燕, 等. 生物质循环流化床锅炉烟气脱硝技术研究与应用[J]. 节能, 2017(3): 47-49.
LI Lianming, LI Qiuping, YU Yan, et al. Research and application of flue gas denitration technology of flue gas from biomass CFB boiler[J]. Energy Conservation, 2017(3): 47-49.
[21] 李廉明, 金建荣, 孙坚, 等. 生物质循环流化床锅炉空气预热器积灰分析[J]. 设备管理与维修, 2017(4): 99-100.
LI Lianming, JIN Jianrong, SUN Jian, et al. Analysis of ash deposition in air preheater of biomass circulating fluidized bed boiler[J]. Plant Maintenance Engineering, 2017(4): 99-100.
[22] 薛军, 翁卫国, 俞燕, 等. 130 t/h全烧生物质锅炉脱硝技术研究及应用[J]. 锅炉制造, 2017(2): 24-26.
XUE Jun, WENG Weiguo, YU Yan, et al. Study and analysis of denitrification technologies on 130 t/h full-biomass-fired boiler[J]. Boiler Manufacturing, 2017(2): 24-26.
[23] 薛玉宝, 郜光伟, 武新虎, 等. 生物质直燃锅炉超低排放脱硝技术研究[J]. 河北电力技术, 2020, 39(2): 29-32.
XUE Yubao, GAO Guangwei, WU Xinhu, et al. Research on ultra-low emissions denitrification technology for biomass direct-fired boiler[J]. Hebei Electric Power, 2020, 39(2): 29-32.
[24] 王小飞, 冯丽军. 生物质锅炉烟气超低排放——脱硝(协同消白)技术研究[J]. 广西节能, 2019(1): 34-35.
WANG Xiaofei, FENG Lijun. Ultra-low emission of flue gas from biomass boiler research on denitration (collaborative whitening) technology[J]. Guangxi Energy Conservation, 2019(1): 34-35.
[25] 郑中原, 赵鹏, 姜玲, 等. 基于云平台的发电机组节能减排实时监控系统[J]. 电力系统保护与控制, 2019, 47(7): 148-154.
ZHENG Zhongyuan, ZHAO Peng, JIANG Ling, et al. A real-time monitoring and control system for energy saving and emission reduction of generator set based on cloud platform[J]. Power System Protection and Control, 2019, 47(7): 148-154.
[26] 林玥廷, 张维奇, 林英明, 等. 考虑燃煤机组健康度与负荷转移的连锁故障供防控策略[J]. 电力系统保护与控制, 2019, 47(17): 101-108.
LIN Yueting, ZHANG Weiqi, LIN Yingming, et al. Control strategy of cascading failures considering the health degree of coal-fired units and load transfer[J]. Power System Protection and Control, 2019, 47(17): 101-108.
[27] 贠保记, 白森珂, 张国. 基于混沌自适应粒子群算法的冷热电联供系统优化[J]. 电力系统保护与控制, 2020, 48(10): 123-130.
YUN Baoji, BAI Senke, ZHANG Guo. Optimization of CCHP system based on a chaos adaptive particle swarm optimization algorithm[J]. Power System Protection and Control, 2020, 48(10): 123-130.
[28] 牛国平, 谭增强, 邱长彪, 等. 一体化高效脱除NOx和粉尘实验研究[J]. 热力发电, 2019, 48(10): 71-76.
NIU Guoping, TAN Zengqiang, QIU Changbiao, et al. Experimental study on integrated removal of NOx and dust by ceramic catalytic filter[J]. Thermal Power Generation, 2019, 48(10): 71-76.
[29] 朱翰超, 马蕊. 考虑需求侧管理的冷热电联供微电网优化配置方法[J]. 电力系统保护与控制, 2019, 47(2): 139-146.
ZHU Hanchao, MA Rui. Optimal configuration method of CCHP microgrid considering demand side management[J]. Power System Protection and Control, 2019, 47(2): 139-146.
(责任编辑 杨嘉蕾)

相似文献/References:

[1]李永玲,印加敏,吴占松.新型秸秆双床热解制气工艺的设计研究[J].热力发电,2008,(11):55.
[2]黄 军,安连锁,吴智泉.石膏旋流器结构参数优化设计研究[J].热力发电,2009,(05):0.
[3]沈国章,钟振成,吴占松.生物质燃料在流化床内结渣特性判别指标研究[J].热力发电,2011,(04):24.
 SHEN Guozhang,ZHONG Zhencheng,WU Zhansong.STUDY ON SLAGGING BEHAVIOR DISTINGUISHING INDEX FOR BIOMASS FUEL BURNING IN THE FLUID BED[J].Thermal Power Generation,2011,(10):24.
[4]闫 军,何育东.燃用高硫煤脱硫装置存在的问题及其解决措施[J].热力发电,2006,(11):0.
[5]黄达其,陈佳琼.我国生物质气化发电技术应用及展望[J].热力发电,2008,(10):6.
[6]袁凤宇,王国庆.采用立式磨机制备脱硫用石灰石粉[J].热力发电,2005,(12):0.
[7]王 娟.锅炉引风机电流偏大原因分析及处理措施[J].热力发电,2006,(01):0.
[8]盛昌栋,张 军.煤粉锅炉共燃生物质发电技术的特点和优势[J].热力发电,2006,(03):0.
[9]周志军,赖开忠,周俊虎,等.气化过程中焦油催化裂解的影响因素研究[J].热力发电,2005,(11):0.
[10]张 敏,王智微,王鹏利,等.分宜发电公司首台国产100 MW CFB锅炉运行实践[J].热力发电,2005,(02):0.
[11]徐金苗,吕子安,李定凯.煤与生物质混燃过程中SO2释放规律研究[J].热力发电,2010,(10):20.
 XU Jinmiao,L Zian,LI Dingkai.STUDY ON SO2-RELEASING REGULARITY IN THE PROCESS OF MIXDELY BURNING COAL AND BOIMASS[J].Thermal Power Generation,2010,(10):20.

备注/Memo

谭增强(1986),男,博士,高级工程师,主要研究方向为燃煤烟气多污染物协同脱除,tanzq2008@126.com。

更新日期/Last Update: 2021-10-15