[1]文 博,杨忠灿,屠竞毅,等.大型准东煤锅炉炉型和燃烧方式选择研究[J].热力发电,2021,50(10):71-77.[doi:10.19666/j.rlfd.202103072 ]
 WEN Bo,YANG Zhongcan,TU Jingyi,et al.Selection of furnace type and combustion mode for large scale boiler firing Zhundong coal[J].Thermal Power Generation,2021,50(10):71-77.[doi:10.19666/j.rlfd.202103072 ]
点击复制

大型准东煤锅炉炉型和燃烧方式选择研究

参考文献/References:

[1] 白云. 新疆准东煤电、煤化工基地经济建设发展情况的调研报告[J]. 中国外资, 2012(20): 233.
BAI Yun. Investigation report on economic construction and development of Zhundong coal power and coal chemical industry base in Xinjiang[J]. Foreign Investment in China, 2012(20): 233.
[2] 姚伟, 杨忠灿, 张喜来, 等. 准东煤锅炉结渣、沾污防控技术研究及应用[R]. 西安: 西安热工研究院有限公司, 2014: 1.
YAO Wei, YANG Zhongcan, ZHANG Xilai, et al. Research and application of prevention and control technology for slagging and contamination of Zhundong coal fired boiler[R]. Xi’an: Xi’an Thermal Power Research Institute Co., Ltd., 2014: 1.
[3] 刘敬, 王智化, 项飞鹏, 等. 准东煤中碱金属的赋存形式及其在燃烧过程中的迁移规律实验研究[J]. 燃料化学学报, 2014, 42(3): 316-322.
LIU Jing, WANG Zhihua, XIANG Feipeng, et al. Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 316-322.
[4] 翁青松, 王长安, 车得福, 等. 准东煤碱金属赋存形态及对燃烧特性的影响[J]. 燃烧科学与技术, 2014, 20(3): 216-221.
WENG Qingsong, WANG Chang’an, CHE Defu, et al. Alkali metal occurrence mode and its influence on combustion characteristics in Zhundong coals[J]. Journal of Combustion Science and Technology, 2014, 20(3): 216-221.
[5] 王智化, 李谦, 刘敬, 等. 准东煤中碱金属的赋存形态及其在热解过程中的迁移规律[J]. 中国电机工程学报, 2014, 34(增刊1): 130-135.
WANG Zhihua, LI Qian, LIU Jing, et al. Occurrence of alkali metals in Zhundong coal and its migration during pyrolysis process[J]. Proceedings of the CSEE, 2014, 34(Suppl.1): 130-135.
[6] 代百乾, 乌晓江, 张忠孝. 高碱煤燃烧过程中灰中主要元素的迁移规律[J]. 动力工程学报, 2014(6): 438-442.
DAI Baiqian, WU Xiaojiang, ZHANG Zhongxiao. Transition behavior of main elements in fly ash during high alkali coal combustion[J]. Journal of Chinese Society of Power Engineering, 2014 (6): 438-442.
[7] 刘炎泉, 程乐鸣, 季杰强, 等. 准东煤燃烧碱金属析出气、固相分布特性[J]. 燃料化学学报, 2016, 44(3): 314-320.
LIU Yanquan, CHENG Leming, JI Jieqiang, et al. Distri-bution characteristics of alkali emission between gas and solid phase during Zhundong coal combustion[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 314-320.
[8] 赵京, 魏小林, 张玉锋, 等. 准东煤中碱金属Na的赋存形态及含量分析[J]. 洁净煤技术, 2019, 25(2): 96-101.
ZHAO Jing, WEI Xiaolin, ZHANG Yufeng, et al. Occurrence modes and content analysis of alkali metal Na in Zhundong coal[J]. Clean Coal Technology, 2019, 25(2): 96-101.
[9] 刘建华, 孙亦鹏, 张清峰, 等. 准东煤旋风燃烧过程碱金属迁移规律[J]. 热能动力工程, 2021, 36(2): 43-48.
LIU Jianhua, SUN Yipeng, ZHANG Qingfeng, et al. Migration mechanism of alkali metals in cyclone combustion of Zhundong coal[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(2): 43-48.
[10] 马达夫, 何翔, 周文台, 等. 新疆高碱煤沾污特性的分析[J]. 发电设备, 2016, 30(1): 7-10.
MA Dafu, HE Xiang, ZHOU Wentai, et al. Analysis on fouling characteristics of Xinjiang high-alkali coal[J]. Power Equipment, 2016, 30(1): 7-10.
[11] 杨忠灿, 刘家利, 何红光. 新疆准东煤特性研究及其锅炉选型[J]. 热力发电, 2010, 39(8): 38-40.
YANG Zhongcan, LIU Jiali, HE Hongguang. Study on properties of Zhundong coal in Xinjiang region and type-selection for boilers burning this coal sort[J]. Thermal Power Generation, 2010, 39(8): 38-40.
[12] 屠竞毅. 新疆信友能源投资有限公司2×660 MW机组#1锅炉安全燃用准东煤试验研究报告[R]. 西安: 西安热工研究院有限公司, 2019: 3.
TU Jingyi. Test report on safe burning Zhundong coal for No.1 boiler of 2×660 MW unit of Xinjiang Xinyou Energy Investment Co., Ltd.[R]. Xi’an: Xi’an Thermal Power Research Institute Co., Ltd., 2019: 3.
[13] 屠竞毅. 华电吉木萨尔五彩湾北一发电有限公司3号锅炉结渣治理及添加高岭土全烧高碱煤试验项目报 告[R]. 西安: 西安热工研究院有限公司, 2020: 15.
TU Jingyi. Report on the project of coking treatment of No.3 boiler of Datang Jimusaer Wucaiwan Beiyi Power Generation Co., Ltd. and full burning of high alkali coal with kaolin[R]. Xi’an: Xi’an Thermal Power Research Institute Co., Ltd., 2020: 15.
[14] 郝震彪. 新疆昌吉特变能源有限责任公司#1号锅炉燃烧调整与将军二矿掺烧试验报告[R]. 西安: 西安热工研究院有限公司, 2020: 17.
HAO Zhenbiao. Test report on combustion adjustment and mixed combustion in Jiangjun No.2 Coal Mine of No.1 boiler in Xinjian Changji TEBIAN Energy Co., Ltd.[R]. Xi’an: Xi’an Thermal Power Research Institute Co., Ltd., 2020: 17.
[15] 国家能源局. 大容量煤粉燃烧锅炉炉膛选型导则: DL/T 831—2015[S]. 北京: 中国电力出版社, 2015: 10.
National Energy Administration. Guide on selection of furnace characteristic parameters for large pulverized coal fired boilers: DL/T 831—2015[S]. Beijing: China Electric Power Press, 2015: 10.
[16] 付勇强, 杨忠灿, 姚伟, 等. 侧煤仓布置对对冲燃烧锅炉运行偏差的影响及对策研究[J]. 工业加热, 2021, 50(4): 44-47.
FU Yongqiang, YANG Zhongcan, YAO Wei, et al. Study on the influence of side bunker arrangement on the operation deviation of opposed firing boiler and the counter-measures[J]. Industrial Heating, 2021, 50(4): 44-47.
[17] 史航, 杨燕梅, 吴玉新, 等. 260 t/h纯烧准东煤循环流化床锅炉设计与运行[J]. 中国电力, 2017, 50(11): 28-32.
SHI Hang, YANG Yanmei, WU Yuxin, et al. Design and operation of the 260 t/h circulating fluidized bed boiler burning Zhundong coal[J]. Electric Power, 2017, 50(11): 28-32.
(责任编辑 马昕红)
/
(上接第52页)
[14] TULEY R S. Lattice-matched InGaAs on InP thermos-phovoltaic cells[J]. Semiconductor Science and Technology, 2013, 28(1): 13-15.
[15] CAKIROGLU D, PEREZ J P, EVIRGEN A, et al. Indium antimonide photovoltaic cells for near-field thermos-photovoltaics[J]. Solar Energy Materials and Solar Cells, 2019, 203: 330.
[16] HUANG W X, MASSENGALE J A, LIN Y, et al. Performance analysis of narrow-bandgap interband cascade thermophotovoltaic cells[J]. Journal of Physics D: Applied Physics, 2020, 53(17): 1523.
[17] MOMOZAKI Y, EL-GENK M S. Investigations of the performance of grooved electrodes thermionic converters at collector temperatures up to 1 023 K[J]. Energy Conversion and Management, 2004, 45(7/8): 1153-1173.
[18] RICHARDSON O W. Electron emission from metals as a function of temperature[J]. Physical Review, 1923, 23(2): 153-155.
[19] WANG Y, LI H, HAO H, et al. Optimal design of the interelectrode space in a photon-enhanced thermionic emission solar cell[J]. Applied Thermal Engineering, 2019, 157: 113758.
[20] YANG W M, CHUA K J, PAN J F, et al. Development of micro-thermophotovoltaic power generator with heat recuperation[J]. Energy Conversion and Management, 2014, 78: 81-87.
[21] QIU K, HAYDEN A, MAUK M G, et al. Generation of electricity using InGaAsSb and GaSb TPV cells in combustion-driven radiant sources[J]. Solar Energy Materials & Solar Cells, 2006, 90(1): 68-81.
[22] WHALE M D, CRAVALHO E G. Modeling and performance of microscale thermophotovoltaic energy conversion devices[J]. IEEE Transactions on Energy Conversion, 2002, 17(1): 130-142.
(责任编辑 杨嘉蕾)

相似文献/References:

[1]苗长信.灰渣塌落引发的锅炉灭火故障案例分析及对策[J].热力发电,2009,(10):43.
 MIAO CHANG[CD*]xin.CASE ANALYSIS OF OUTFIRE TROUBLE IN BOILERS DUE TO ASH[CDF*2]SLAG COLLAPSE AND COUNTER[CDF*2]MEASURES THEREOF[J].Thermal Power Generation,2009,(10):43.
[2]应明良,戴成峰,胡伟锋,等.四角切圆燃烧锅炉掺烧印尼煤运行特性分析[J].热力发电,2008,(11):64.
[3]沈国章,钟振成,吴占松.生物质燃料在流化床内结渣特性判别指标研究[J].热力发电,2011,(04):24.
 SHEN Guozhang,ZHONG Zhencheng,WU Zhansong.STUDY ON SLAGGING BEHAVIOR DISTINGUISHING INDEX FOR BIOMASS FUEL BURNING IN THE FLUID BED[J].Thermal Power Generation,2011,(10):24.
[4]张 堃,黄镇宇,修洪雨,等.煤灰中化学成分对熔融和结渣特性影响的探讨[J].热力发电,2005,(12):0.
[5]赵炎钧,邹海峰,李志山.电站锅炉燃用神华煤特性分析[J].热力发电,2005,(06):0.
[6]胡殿儒,张 波,文 军.一台220 t/h燃煤锅炉防结渣方案研究[J].热力发电,2004,(10):0.
[7]胡 敏,饶苏波.切向燃烧煤粉炉炉膛结渣原因及预防措施[J].热力发电,2004,(05):0.
[8]池作和,周 昊,蒋 啸,等.解决300MW锅炉炉内严重结渣问题的技术和方法[J].热力发电,2002,(05):0.
[9]文军,王春昌,周虹光,等.一台410t/h燃煤锅炉水冷壁结渣原因探讨及解决对策[J].热力发电,2003,(01):0.
[10]徐少波,李佛金.新型AerotipTM煤粉喷嘴在660MW机组燃烧器改造中的应用[J].热力发电,2002,(04):0.
[11]杨忠灿,刘家利,何红光.新疆准东煤特性研究及其锅炉选型[J].热力发电,2010,(08):38.
 YANG Zhongcan,LIU Jiali,HE Hongguang.STUDY ON PROPERTIES OF ZHUNDONG COAL IN XINJIANG REGION AND TYPE-SELECTION FOR BOILERS BURNING THIS COAL SORT[J].Thermal Power Generation,2010,(10):38.
[12]赵 冰,王嘉瑞,王鹏辉,等.100 MW机组锅炉油页岩掺烧准东煤试验[J].热力发电,2017,(7):103.
 ZHAO Bing,WANG Jiarui,WANG Penghui,et al.Experiments about co-firing shale with Zhundong coal in a 100 MW unit boiler[J].Thermal Power Generation,2017,(10):103.
[13]李宇航,张喜来,张 森,等.准东煤防结渣添加剂应用试验[J].热力发电,2017,(9):135.
 LI Yuhang,ZHANG Xilai,ZHANG Sen,et al.Experimental study on additives applied to against slagging of Zhundong coal[J].Thermal Power Generation,2017,(10):135.
[14]曹培庆,张喜来,白 杨,等.高岭土对准东煤结渣特性影响试验研究[J].热力发电,2018,(11):65.[doi:10.19666/j.rlfd.201801021]
 CAO Peiqing,ZHANG Xilai,BAI Yang,et al.Experimental study on influence of kaolin on slagging characteristics of Zhundong coal during combustion[J].Thermal Power Generation,2018,(10):65.[doi:10.19666/j.rlfd.201801021]
[15]陈大元,刘家利,方顺利,等.准东煤锅炉掺烧时煤灰成分控制研究[J].热力发电,2020,49(01):26.[doi:10.19666/j.rlfd.201906189 ]
 CHEN Dayuan,LIU Jiali,FANG Shunli,et al.Control of coal ash composition during co-combustion of Zhundong coal boiler[J].Thermal Power Generation,2020,49(10):26.[doi:10.19666/j.rlfd.201906189 ]
[16]李良钰,王毅斌,王 萌,等.磷酸钙对缓解准东高钠-富铁混煤结渣倾向的影响[J].热力发电,2021,50(10):62.[doi:10.19666/j.rlfd.202103035 ]
 LI Liangyu,WANG Yibin,WANG Meng,et al.Effect of adding calcium phosphate on alleviating slagging of high sodium rich iron blended Zhundong coal[J].Thermal Power Generation,2021,50(10):62.[doi:10.19666/j.rlfd.202103035 ]

备注/Memo

文博(1968),男,高级工程师,主要从事电厂技术管理,wenbo@jiugang.com。

更新日期/Last Update: 2021-10-15