[1]孔祥花,田 华,石凌峰,等.内燃机余热回收分流式二氧化碳 动力循环系统经济性分析[J].热力发电,2021,50(10):30-38.[doi:10.19666/j.rlfd.202105100 ]
 KONG Xianghua,TIAN Hua,SHI Lingfeng,et al.Economic analysis for carbon dioxide power cycle with split-flow and waste heat recovery of internal combustion engine[J].Thermal Power Generation,2021,50(10):30-38.[doi:10.19666/j.rlfd.202105100 ]
点击复制

内燃机余热回收分流式二氧化碳 动力循环系统经济性分析

参考文献/References:

[1] YANG F, DONG X, ZHANG H, et al. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions[J]. Energy Conversion & Management, 2014, 80(2): 243-255.
[2] PLOTKIN S, STEPHENS T, MCMANUS W. Transporta-tion energy futures series: vehicle technology deployment pathways: an examination of timing and investment constraints[R]. United States. Department of Energy. Office of Energy Efficiency and Renewable Energy. Golden, Colorado: National Renewable Energy Laboratory (U.S.), 2013: 1.
[3] CHOI B C. Thermodynamic analysis of a transcritical CO2, heat recovery system with 2-stage reheat applied to cooling water of internal combustion engine for propulsion of the 6800 TEU container ship[J]. Energy, 2016, 107: 532-541.
[4] MOHAMMADI K, MCGOWAN J G. Thermoeconomic analysis of multi-stage recuperative Brayton cycles: Part II: waste energy recovery using CO2 and organic Rankine power cycles[J]. Energy Conversion and Management, 2019, 185: 920-934.
[5] SONG J, LI X S, REN X D, et al. Performance improvement of a preheating supercritical CO2 (S-CO2) cycle based system for engine waste heat recovery[J]. Energy Conversion & Management, 2018, 161: 225-233.
[6] KIM Y M, SOHN J L, YOON E S. Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine[J]. Energy, 2017, 118: 893-905.
[7] SHU G, SHI L, TIAN H, et al. Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat[J]. Applied Energy, 2016, 186: 423-435.
[8] HUANG G D, SHU G Q, TIAN H, et al. Development and experimental study of a supercritical CO2 axial turbine applied for engine waste heat recovery[J]. Applied Energy, 2020, 257: 113997.1-113997.10.
[9] VAJA I, GAMBAROTTA A. Internal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs)[J]. Energy, 2010, 35(2): 1084-1093.
[10] KIM Y M, KIM C G, FAVRAT D. Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources[J]. Energy, 2012, 43(1): 402.
[11] CHEN Y G. Optimal heat rejection pressure of CO2 heat pump water heaters based on pinch point analysis[J]. International Journal of Refrigeration, 2019: 106: 592.
[12] HARTNETT J P, IRVINE T F. Advances in heat transfer: Vol.6[M]. Academic Press, 1970: 1.
[13] PETUKHOV B, KRASNOSHCHEKOV E, PROTO-POPOV V. An investigation of heat transfer to fluids flowing in pipes under supercritical conditions[J]. ASME International Developments in Heat Transfer Part, 1961, 3: 569-578.
[14] CHEN J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329.
[15] WALRAVEN D, LAENEN B, D’HAESELEER W. Optimum configuration of shell-and-tube heat exchangers for the use in low-temperature organic Rankine cycles[J]. Energy Conversion and Management, 2014, 83: 177-187.
[16] TURTON R, BAILIE R C, WHITING W B, et al. Analysis, synthesis and design of chemical processes[M]. New York: Pearson Education, 2008: 1.
[17] 国家能源局. 国家能源局关于2017年度全国电力价格情况监管通报[A/OL]. (2018-10-09)[2021-05-30]. http:// www.gov.cn/xinwen/2018-10/09/5328808/files/fe3fe19e 7cc646b39338fdab3e24fb3a.pdf.
National Energy Administration of China. Notice of National Energy Administration on the supervision of electricity prices in 2017[A/OL]. (2018-10-09)[2021-05-30]. http://www.gov.cn/xinwen/2018-10/09/5328808/files/fe3 fe19e7cc646b39338fdab3e24fb3a.pdf.
[18] KANBUR B B, XIANG L, DUBEY S, et al. A micro cogeneration system with LNG cold utilization-part 1: energetic, economic and environmental analysis[J]. Energy Procedia, 2017, 105: 1902-1909.
[19] 乐健, 周谦, 王曹, 等. 无功补偿设备和分布式电源协同的配电网优化控制策略研究[J]. 电力系统保护与控制, 2020, 48(18): 38-47.
LE Jian, ZHOU Qian, WANG Cao, et al. Research on distributed optimal control strategy for a distribution network based on the cooperation of DGs and Var compensators[J]. Power System Protection and Control, 2020, 48(18): 38-47.
[20] 王昊昊, 徐泰山, 马彦宏, 等. 计及多类型电源协调的有功控制策略[J]. 电力系统保护与控制, 2019, 47(4): 167-175.
WANG Haohao, XU Taishan, MA Yanhong, et al. A novel active power control strategy considering multi-resource coordination[J]. Power System Protection and Control, 2019, 47(4): 167-175.
(责任编辑 李园)

相似文献/References:

[1]谷雅秀,王生鹏,高振生.冷热电三联产系统研究进展[J].热力发电,2010,(12):14.
 GU Yaxiu,WANG Shengpeng,GAO Zhensheng.PROGRESS IN RESEARCH OF COOL,HEAT,AND ELECTRICITY TRIPLE CO-GENERATION SYSTEM[J].Thermal Power Generation,2010,(10):14.
[2]蒋祥军,胡达,胡亮光,等.采用螺杆膨胀动力机技术有效降低发电厂的厂用电率[J].热力发电,2006,(09):0.
[3]张朋飞,付昶,王伟锋,等.热泵循环水余热利用的火用效率分析[J].热力发电,2015,(06):106.
 ZHANG Pengfei,FU Chang,WANG Weifeng,et al.Exergy efficiency analysis of heat pump heating system recycling waste heat from circulating water[J].Thermal Power Generation,2015,(10):106.
[4]毛发,章学来,丁磊,等.热管式相变储能系统蓄/放热性能试验[J].热力发电,2016,(11):48.
 MAO Fa,ZHANG Xuelai,DING Lei,et al.Experimental research on heat charging and discharging performance of heat pipe phase change energy storage system[J].Thermal Power Generation,2016,(10):48.
[5]贾红金,冷 敏,李 珩.供热机组经济性指标简化计算方法[J].热力发电,2017,(7):115.
 JIA Hongjin,LENG Min,LI Heng.Simplified calculation method for economical indexes of heating units[J].Thermal Power Generation,2017,(10):115.
[6]王金平,安连锁,张学镭.燃煤锅炉烟气余热深度回收及脱水性能分析[J].热力发电,2018,(4):48.[doi:10.19666/j.rlfd.201710165 ]
 WANG Jinping,AN Liansuo,ZHANG Xuelei.Performance analysis on heat and water recovery from flue gas of coal-fired boiler[J].Thermal Power Generation,2018,(10):48.[doi:10.19666/j.rlfd.201710165 ]
[7]时国华,刘彦琛,李晓静,等.天然气烟气余热高效回收技术研究进展[J].热力发电,2020,49(02):1.[doi:10.19666/j.rlfd.201907135 ]
 SHI Guohua,LIU Yanchen,LI Xiaojing,et al.Research advances on waste heat recovery technology of natural gas-fired flue gas[J].Thermal Power Generation,2020,49(10):1.[doi:10.19666/j.rlfd.201907135 ]
[8]张旭伟,李红智,乔永强,等.集成余热回收的超临界二氧化碳燃煤发电系统研究[J].热力发电,2020,49(12):17.[doi:10.19666/j.rlfd.202003158 ]
 ZHANG Xuwei,LI Hongzhi,QIAO Yongqiang,et al.Study on supercritical carbon dioxide coal-fired power generation system integrated with waste heat recovery[J].Thermal Power Generation,2020,49(10):17.[doi:10.19666/j.rlfd.202003158 ]
[9]张旭伟,白文刚,吴家荣,等.采用超临界二氧化碳动力循环回收燃气轮机排气余热的系统优化研究[J].热力发电,2021,50(05):43.[doi:10.19666/j.rlfd.202009236]
 ZHANG Xuwei,BAI Wengang,WU Jiarong,et al.Optimization of system using supercritical carbon dioxide power cycle to recover waste heat from gas turbine exhaust[J].Thermal Power Generation,2021,50(10):43.[doi:10.19666/j.rlfd.202009236]
[10]吴彦丽,陈赞林,赵子萱,等.CO2热泵耦合燃气锅炉供暖系统研究[J].热力发电,2021,50(05):133.[doi:10.19666/j.rlfd.202008242]
 WU Yanli,CHEN Zanlin,ZHAO Zixuan,et al.Research on CO2 heat pump coupling gas boiler heating system[J].Thermal Power Generation,2021,50(10):133.[doi:10.19666/j.rlfd.202008242]

备注/Memo

孔祥花(1981),女,硕士,工程师,主要研究方向为余热回收技术、先进零部件技术,kongxh@weichai.com。

更新日期/Last Update: 2021-10-15