[1]赵明冉,裴瑾泽,赵远扬.超临界二氧化碳压缩机非平衡冷凝研究进展[J].热力发电,2021,50(10):14-20.[doi:10.19666/j.rlfd.202105104 ]
 ZHAO Mingran,PEI Jinze,ZHAO Yuanyang.Research progress on non-equilibrium condensation of supercritical carbon dioxide in compressor[J].Thermal Power Generation,2021,50(10):14-20.[doi:10.19666/j.rlfd.202105104 ]
点击复制

超临界二氧化碳压缩机非平衡冷凝研究进展

参考文献/References:

[1] 叶侠丰, 潘卫国, 尤运, 等. 超临界二氧化碳布雷顿循环在发电领域的应用[J]. 电力与能源, 2017, 38(3): 131-135.
YE Xiafeng, PAN Weiguo, YOU Yun, et al. Application of supercritical carbon dioxide Brayton cycle in power generation[J]. Power and Energy, 2017, 38(3): 131-135.
[2] STARZMANN J, CASEY M, SIEVERDING F. Non-equilibrium condensation effects on the flow field and the performance of a low pressure steam turbine[C]// Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010: 2199-2208.
[3] RYZHOV Y A, PIRUMOV U G, GORBUNOV V N. Non-equilibrium condensation in high-speed gas flows[J]. SIAM Rev, 1991, 33(1): 159-160.
[4] BALTADJIEV N D, LETTIERI C, SPAKOVSZKY Z S. An investigation of real gas effects in supercritical co2 centrifugal compressors[J]. Journal of Turbomachinery, 2015, 137(9): 091003.1-091003.12.
[5] 杨富方, 刘航滔, 杨震, 等. 超临界二氧化碳循环工质热物性研究进展[J]. 热力发电, 2020, 49(10): 27-35.
YANG Fufang, LIU Hangtao, YANG Zhen, et al. Thermo-physical properties of working fluid of supercritical carbon dioxide cycle: research progress[J]. Thermal Power Generation, 2020, 49(10): 27-35.
[6] 刘晓薇. H2O/CO2混合工质凝结流动特性分析[D]. 大连: 大连理工大学, 2020: 21-27.
LIU Xiaowei. Analysis of condensation flow characte-ristics of H2O/CO2 mixtures[D]. Dalian: Dalian University of Technology, 2020: 21-27.
[7] 倪壮. 超临界H2O/CO2汽轮机初凝区流场特性数值分析研究[D]. 大连: 大连理工大学, 2019: 15-19.
NI Zhuang. Numerical analysis of flow field characte-ristics in initial condensation zone of supercritical H2O/CO2 steam turbine[D]. Dalian: Dalian University of Technology, 2019: 15-19.
[8] NOALL J S, PASCH J. Achievable efficiency and stability of supercritical CO2 compression systems[C]. Super-critical CO2 Power Cycle Symposium. Pennsylvania Pittsburgh, 2014.
[9] 朱玉铭, 姜玉雁, 梁世强, 等. 超临界二氧化碳布雷顿发电循环压缩机实验研究进展[J]. 热力发电, 2020, 49(10): 17-26.
ZHU Yuming, JIANG Yuyan, LIANG Shiqiang, et al. Experimental research progress of supercritical carbon dioxide Brayton cycle compressor[J]. Thermal Power Generation, 2020, 49(10): 17-26.
[10] CONBOY T, WRIGHT S, PASCH J, et al. Performance characteristics of an operating supercritical CO2 Brayton cycle[J]. Journal of Engineering for Gas Turbines & Power, 2012, 134(11): 941-952.
[11] LETTIERI C, YANG D, SPAKOVSZKY Z. An investigation of condensation effects in supercritical carbon dioxide compressors[J]. Journal of Engineering for Gas Turbines & Power, 2015, 137(8): 082602.1-082602.8.
[12] WRIGHT S A, RADEL R F, VERNON M E, et al. Operation and analysis of a supercritical CO2 Brayton cycle[R]. Sandia Report, No.SAND2010-0171, 2010: 31.
[13] PECNIK R, RINALDI E, COLONNA P. Computational fluid dynamics of a radial compressor operating with supercritical CO2[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(12): 122-301.
[14] ALLISON T C, MCCLUNG A. Limiting inlet conditions for phase change avoidance in supercritical CO2 com-pressors[C]. ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. ASME, 2019.
[15] BRINCKMAN K W, HOSANGADI A, LIU Z, et al. Numerical simulation of non-equilibrium condensation in supercritical CO2 compressors[C]. ASME Turbo Expo 2019: Turbomachinery Technical Conference and Expo-sition. ASME, 2019.
[16] 徐骏, 巢栩嘉, 范世望, 等. MW级超临界二氧化碳发电系统中主压缩机首级设计及其入口凝结性能分析[J]. 热力发电, 2020, 49(10): 186-194.
XU Jun, CHAO Xujia, FAN Shiwang, et al. Design and condensation performance analysis on the first stage of main compressor in MW-level supercritical carbon dioxide power generation system[J]. Thermal Power Generation, 2020, 49(10): 186-194.
[17] 赵航, 邓清华, 黄雯婷, 等. 超临界二氧化碳离心压缩机叶顶两相流动研究[J]. 工程热物理学报, 2015, 36(7): 1433-1436.
ZHAO Hang, DENG Qinghua, HUANG Wenting, et al. Numerical investigation on the blade tip two-phase flow characteristics of a supercritical CO2 centrifugal compressor[J]. Journal of Engineering Thermophysics, 2015, 36(7): 1433-1436.
[18] 谢永慧, 王雨琦, 张荻, 等. 超临界二氧化碳布雷顿循环系统及透平机械研究进展[J]. 中国电机工程学报, 2018, 38(24): 7276-7286.
XIE Yonghui, WANG Yuqi, ZHANG Di, et al. Review on research of supercritical carbon dioxide Brayton cycle and turbomachinery[J]. Proceedings of the CSEE, 2018, 38(24): 7276-7286.
[19] 何欣欣, 裴东升, 陈会勇, 等. 二氧化碳热物性方程研究进展及应用[J]. 热力发电, 2021, 50(5): 27-33.
HE Xinxin, PEI Dongsheng, CHEN Huiyong, et al. Research progress and applications of thermophysical equations of carbon dioxide[J]. Thermal Power Generation, 2021, 50(5): 27-33.
[20] STARLING K E, HAN M S. Thermo data refined for LPG, Part 14: mixtures[J]. Hydrocarbon Processing, 1972, 51: 129.
[21] LOCKER U, KNAPP H, PRAUSNITZ J. Calculation of high-pressure vapor-liquid equilibria from a corres-ponding states correlation with emphasis on asymmetric mixtures[J]. Industrial and Engineering Chemistry Process Design and Development, 1978, 17(3): 324-332.
[22] PENG D Y, ROBINSON D B. A new two-constant equation of state[J]. Minerva Ginecologica, 1976, 12(1): 3069-3078.
[23] SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engi-neering Science, 1972, 27: 1197-1203.
[24] 杨富方, 刘强, 段远源, 等. 跨接比容平移立方型状态方程及其高阶跨接函数[J]. 科学通报, 2019, 64(26): 2741-2750.
YANG Fufang, LIU Qiang, DUAN Yuanyuan, et al. Transonic cubic equation of state and its higher order transducing functions[J]. Science Bulletin, 2019, 64(26): 2741-2750.
[25] KUNZ O, KLIMECK R, WAGNER W, et al. The GERG-2004 wide range equation of state for natural gases and other mixtures[R]. Düsseldorf: Publishing House of the Association of German Engineers, 2007: 1-19.
[26] SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1 100 K at pressure up to 800 MPa[J]. Journal of Physical & Chemical Reference Data, 1996, 25(6): 1509-1596.
[27] YANG F F, LIU Q, DUAN Y Y, et al. Crossover multiparameter equation of state: general procedure and demonstration with carbon dioxide[J]. Fluid Phase Equilibria, 2019, 494: 161-171.
[28] KANTROWITZ A. Nucleation in very rapid vapor expansions[J]. The Journal of Chemical Physics, 1951, 19(9): 1097-1100.
[29] FEDER J, RUSSELL K C, LOTHE J, et al. Homogeneous nucleation and growth of droplets in vapours[J]. Advances in Physics, 1966, 15(57): 111-178.
[30] COURTNEY W G. Remarks on homogeneous nucleation[J]. The Journal of Chemical Physics, 1961, 35(6): 2249-2250.
[31] W?LK J, STREY R. Homogeneous nucleation of H2O and D2O in comparison: the isotope effect[J]. The Journal of Physical Chemistry B, 2001, 105(47): 11683-11701.
[32] HALE B N. The scaling of nucleation rates[J]. Metallurgical Transactions A, 1992, 23(7): 1863-1868.
[33] 廖国进, 华枫. 水蒸气非平衡凝结流动研究进展[J]. 化工装备技术, 2016, 37(6): 53-59.
LIAO Guojin, HUA Feng. Research progress on non-equilibrium condensation flow of water vapor[J]. Chemical Equipment Technology, 2016, 37(6): 53-59.
[34] BAKHTAR F, YOUNG J B, WHITE A J, et al. Classical nucleation theory and its application to condensing steam flow calculations[J]. Archive Proceedings of the Institution of Mechanical Engineers, 2005, 219(12): 1315-1333.
[35] GERBER A G, KERMANI M J. A pressure based Eulerian-Eulerian multi-phase model for non-equili-brium condensation in transonic steam flow[J]. Interna-tional Journal of Heat & Mass Transfer, 2004, 47(10/11): 2217-2231.
[36] FURUSAWA T, MIYAZAWA H, YAMAMOTO S, et al. Numerical method for simulating supercritical CO2 flows with high-pressure nonequilibrium condensation[C]. Turbo Expo: Power for Land, Sea, and Air. ASME, 2018.
[37] AMELI A, AFZALIFAR A, TURUNEN-SAARESTI T, et al. Effects of real gas model accuracy and operating conditions on supercritical CO2 compressor performance and flow field[C]. Turbo Expo: Power for Land, Sea, and Air. ASME, 2017.
[38] ZHANG G, ZHANG X, WANG F, et al. The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model[J]. International Journal of Multiphase Flow, 2019, 114: 180-191.
[39] ZANZI S. Numerical simulation on CO2 flow characters near critical status with condensing phenomenon[D]. Shanghai: Shanghai Jiao Tong University, 2019: 1.
[40] DENG Q, JIANG Y, HU Z, et al. Condensation and expansion characteristics of water steam and carbon dioxide in a Laval nozzle[J]. Energy, 2019, 175: 694-703.
[41] BROWN S, MARTYNOV S, MAHGEREFTEH H, et al. A homogeneous relaxation flow model for the full bore rupture of dense phase CO2 pipelines[J]. International Journal of Greenhouse Gas Control, 2013, 17: 349-356.
[42] 汪杨乐, 周源, 王俊峰, 等. 超临界二氧化碳临界流均相松弛模型[C]//第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会论文集. 成都: 四川大学物理科学与技术学院, 2019: 1.
WANG Yangle, ZHOU Yuan, WANG Junfeng, et al. Homogeneous relaxation model for supercritical carbon dioxide critical flow[C]//Proceedings of the 16th National Conference on Reactor Thermal Fluid and the 2019 Annual Conference of the Key Laboratory of Nuclear Reactor Thermal Hydraulic Technology of China. Chengdu: School of Physical Science and Technology Sichuan University, 2019: 1.
[43] DUFF K M. Condensation of carbon dioxide in supersonic nozzles[R]. Massachusetts Inst of Tech Cambridge Gas Turbine Lab, 1964: 1.
[44] YANG D. Experimental assessment of the internal flow behavior of supercritical carbon dioxide[D]. Massachusetts, United States: Massachusetts Institute of Technology, 2014: 1.
[45] PAXSON D. Experimental characterization of condensation behavior for metastable carbon dioxide[D]. Massachusetts, United States: Massachusetts Institute of Technology, 2016: 1.
[46] CRESPO A J. Effects of trans/supercritical behavior of carbon dioxide on power and propulsion applications[D]. Massachusetts, United States: Massachusetts Institute of Technology, 2018: 1.
[47] LETTIERI C, PAXSON D, SPAKOVSZKY Z, et al. Characterization of non-equilibrium condensation of supercritical carbon dioxide in a de Laval nozzle[J]. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2018, 140(4): 041701.
[48] 赵铁军, 孟菁, 宋岳奇, 等. 组串式光伏系统直流串联电弧故障检测与保护策略[J]. 电力系统保护与控制, 2020, 48(20): 74-82.
ZHAO Tiejun, MENG Jing, SONG Yueqi, et al. Series arc detection and protection on the DC side of string-type PVs[J]. Power System Protection and Control, 2020, 48(20): 74-82.
(责任编辑 李园)

相似文献/References:

[1]赵明冉,裴瑾泽,赵远扬.超临界二氧化碳压缩机非平衡冷凝研究进展[J].热力发电,2021,50(预出版):1.[doi:10.19666/j.rlfd.202105104]
 ZHAO Mingran,PEI Jinze,ZHAO Yuanyang.Research progress on non-equilibrium condensation of supercritical carbon dioxide in compressor[J].Thermal Power Generation,2021,50(10):1.[doi:10.19666/j.rlfd.202105104]

备注/Memo

赵明冉(1999),男,硕士研究生,主要研究方向为超临界二氧化碳非平衡相变,mingranzhao@163.com。

更新日期/Last Update: 2021-10-15