[1]姜 超,董鹤鸣,谢 敏,等.超临界二氧化碳传热恶化现象研究进展[J].热力发电,2021,50(10):1-13.[doi:10.19666/j.rlfd.202104057 ]
 JIANG Chao,DONG Heming,XIE Min,et al.Research progress on heat transfer deterioration of supercritical carbon dioxide[J].Thermal Power Generation,2021,50(10):1-13.[doi:10.19666/j.rlfd.202104057 ]
点击复制

超临界二氧化碳传热恶化现象研究进展

参考文献/References:

[1] 中华人民共和国国务院新闻办公室. 新时代的中国能源发展[N]. 人民日报, 2020-12-22(01).
The State Council Information Office of the People’s Republic of China. China’s energy development in the new era[N]. People’s Daily, 2020-12-22(01).
[2] 习近平. 关于《中共中央关于制定国民经济和社会发展第十四个五年规划和二○三五年远景目标的建议》的说明[J]. 新长征, 2020(12): 4-7.
XI Jinping. Explanation on the Proposal of the Central Committee of the Communist Party of China on formulating the Fourteenth Five-Year Plan for national economic and social development and the vision goals for the year 2035[J]. New Long March, 2020(12): 4-7.
[3] LIU Y, WANG Y, HUANG D. Supercritical CO2 Brayton cycle: a state-of-the-art review[J]. Energy, 2019, 189: 115900.
[4] WRIGHT S A, CONBOY T M, PARMA E J, et al. Summary of the Sandia supercritical CO2 development program[J]. Chinese Journal of Chemistry, 2011, 21(12): 1562-1564.
[5] MOULLEC Y L. Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a super-critical CO2 Brayton cycle[J]. Energy, 2013, 49(1): 32-46.
[6] MOORE J, CICH S, DAY-TOWLER M, et al. Development and testing of a 10 MWe supercritical CO2 turbine in a 1 MWe flow loop[C]. ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. 2020.
[7] LI H Z, ZHANG Y F, YAO M Y, et al. Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop[J]. Energy, 2019, 174: 792-804.
[8] ZHU B, XU J, WU X, et al. Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes[J]. International Journal of Thermal Sciences, 2019, 136: 254-266.
[9] DUSCHEK W, KLEINRAHM R, WAGNER W. Measure-ment and correlation of the (pressure, density, temperature) relation of carbon dioxide II. Saturated-liquid and saturated-vapour densities and the vapour pressure along the entire coexistence curve[J]. Journal of Chemical Thermodynamics, 1990, 22(9): 841-864.
[10] VARZANDEH F, STENBY E H, YAN W. Comparison of GERG-2008 and simpler EoS models in calculation of phase equilibrium and physical properties of natural gas related systems[J]. Fluid Phase Equilibria, 2017, 434: 21-43.
[11] JACKSON J D. Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration[J]. Applied Thermal Engineering, 2017, 124: 1481-1491.
[12] FAN Y H, TANG G H, LI X L, et al. Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes[J]. Energy, 2019, 170: 480-496.
[13] HEIDARYAN E, HATAMI T, RAHIMI M, et al. Viscosity of pure carbon dioxide at supercritical region: measure-ment and correlation approach[J]. The Journal of Supercritical Fluids, 2011, 56(2): 144-151.
[14] SCH?FER M, RICHTER M, SPAN R. Measurements of the viscosity of carbon dioxide at temperatures from (253. 15 to 473.15) K with pressures up to 1.2 MPa[J]. The Journal of Chemical Thermodynamics, 2015, 89: 7-15.
[15] WANG Z, SUN B, YAN L. Improved density correlation for supercritical CO2[J]. Chemical Engineering & Technology, 2015, 38(1): 75-84.
[16] VOGEL E. The viscosities of dilute Kr, Xe, and CO2 revisited: new experimental reference data at temperatures from 295 K to 690 K[J]. International Journal of Thermophysics, 2016, 37(6): 1-20.
[17] HARVEY A H, BELL I H, HUBER M L, et al. Thermophysical properties of carbon dioxide and CO2-rich mixtures[M]. United States: Applied Chemicals and Materials Division National Institute of Standards and Technology, 2016: 1-56.
[18] ISHMAEL M P E, LUKAWSKI M Z, TESTER J W. Isobaric heat capacity (Cp) measurements of supercritical fluids using flow calorimetry: equipment design and experimental validation with carbon dioxide, methanol, and carbon dioxide-methanol mixtures[J]. The Journal of Supercritical Fluids, 2016, 117: 72-79.
[19] ZHANG Y, CHEN Y, ZHAN T, et al. Measurement of thermal diffusivity for carbon dioxide (CO2) at T=293.15~ 406.15 K and pressures up to 11 MPa by dynamic light scattering (DLS)[J]. Fluid Phase Equilibri, 2018, 474: 126-130.
[20] ZHOU Y, NI H, SHEN Z, et al. Experimental measure-ment on the viscosity of supercritical carbon dioxide[J]. Measurement, 2020, 151: 107188.
[21] HUBER M L, SYKIOTI E A, ASSAEL M J, et al. Reference correlation of the thermal conductivity of carbon dioxide from the triple point to 1 100 K and up to 200 MPa[J]. Journal of Physical and Chemical Reference Data, 2016, 45(1): 013102.
[22] LAESECKE A, MUZNY C D. Reference correlation for the viscosity of carbon dioxide[J]. Journal of Physical & Chemical Reference Data, 2017, 46(1): 013107.
[23] 杨富方, 刘航滔, 杨震, 等. 超临界二氧化碳循环工质热物性研究进展[J]. 热力发电, 2020, 49(10): 21-29.
YANG Fufang, LIU Hangtao, YANG Zhen, et al. Thermo-physical properties of working fluid of supercritical carbon dioxide cycle: research progress[J]. Thermal Power Generation, 2020, 49(10): 21-29.
[24] 高明, 申楠楠, 章立新, 等. 超临界二氧化碳物性参数测量方法综述[J]. 中国测试, 2021, 47(2): 32-43.
GAO Ming, SHEN Nannan, ZHANG Lixin, et al. Review of measurement methods for physical parameters of supercritical carbon dioxide[J]. China Measurement & Test, 2021, 47(2): 32-43.
[25] SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1 100 K at Pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596.
[26]REDLICH O, KWONG J N S. On the thermodynamics of solutions. V. An equation of state. fugacities of gaseous solutions[J]. Chemical Reviews, 1949, 44(1): 233-244.
[27] SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engi-neering Science, 1972, 27(6): 1197-1203.
[28] PENG D Y, ROBINSON D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64.
[29] HOSSEIN R, NADER L M. New functionality for energy parameter of redlich-kwong equation of state for density calculation of pure carbon dioxide and ethane in liquid, vapor and supercritical phases[J]. Periodica Polytechnica Chemical Engineering, 2015, 60(2): 93-97.
[30] HEKAYATI J, ROOSTA A, JAVANMARDI J. Volumetric properties of supercritical carbon dioxide from volume-translated and modified Peng-Robinson equations of state[J]. Korean Journal of Chemical Engineering, 2016, 33(11): 3231-3244.
[31] KABDENOVA B, ROJAS-SOL?RZANO L R, MONACO E. Lattice Boltzmann simulation of near/ supercritical CO2 flow featuring a crossover formulation of the equation of state[J]. Computers & Fluids, 2021, 216: 104820.
[32] YANG F F, LIU Q, DUAN Y Y, et al. On the temperature dependence of the α function in the cubic equation of state[J]. Chemical Engineering Science, 2018, 192: 565-575.
[33] 杨富方, 刘强, 段远源, 等. 跨接比容平移立方型状态方程及其高阶跨接函数[J]. 科学通报, 2019, 64(26): 2741-2750.
YANG Fufang, LIU Qiang, DUAN Yuanyuan, et al. Crossover volume translation cubic equation of state and its high-order crossover functions[J]. Chinese Science Bulletin, 2019, 64: 2741-2750.
[34] YANG F F, LIU Q, DUAN Y Y, et al. Crossover multi-parameter equation of state: general procedure and demonstration with carbon dioxide[J]. Fluid Phase Equilibria, 2019, 494: 161-171.
[35] YANG F F, YANG F, CHU Q, et al. Thermodynamic performance limits of the organic Rankine cycle: working fluid parameterization based on corresponding states modeling[J]. Energy Conversion and Management, 2020, 217: 113011.
[36] 何欣欣, 裴东升, 陈会勇, 等. 二氧化碳热物性方程研究进展及应用[J]. 热力发电, 2021: 50(5): 27-33.
HE Xinxin, PEI Dongsheng, CHEN Huiyong, et al. Research progress and applications of thermophysical equations of carbon dioxide[J]. Thermal Power Genera-tion, 2021, 50(5): 27-33.
[37] BAHADORI A, MOKHATAB S. Estimating thermal conductivity of hydrocarbons[J]. Chemical Engineering, 2008, 115: 52-54.
[38] 章聪, 江锦波, 彭旭东, 等. 近临界区CO2物性预测模型对比与修正[J]. 化工学报, 2019, 70(8): 3058-3070.
ZHANG Cong, JIANG Jinbo, PENG Xudong, et al. Comparison and correction of CO2 properties model in critical region[J]. CIESC Journal, 2019, 70(8): 3058-3070.
[39] 孙辉, 章立新, 杨其国, 等. 基于GA-BP神经网络的超临界二氧化碳折射率及密度预测[J]. 热力发电, 2020, 49(10): 59-64.
SUN Hui, ZHANG Lixin, YANG Qiguo, et al. Prediction of refractive index and density of supercritical carbon dioxide based on GA-BP neural network[J]. Thermal Power Generation, 2020, 49(10): 59-64.
[40] AMAR M N, GHAHFAROKHI A J, ZERAIBI N. Predicting thermal conductivity of carbon dioxide using group of data-driven models[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 113: 165-177.
[41] JARRAHIAN A, HEIDARYAN E. A novel correlation approach to estimate thermal conductivity of pure carbon dioxide in the supercritical region[J]. The Journal of Supercritical Fluids, 2012, 64: 39-45.
[42] AMOOEY A A. A simple correlation to predict thermal conductivity of supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2014, 86: 1-3.
[43] AHMADI M A, BAGHBAN A. Evolving simple-to-apply models for estimating thermal conductivity of supercri-tical CO2[J]. International Journal of Ambient Energy, 2015, 38(1/2/3/4): 1-19.
[44] ROSTAMI A, ARABLOO M, EBADI H. Genetic programming (GP) approach for prediction of supercri-tical CO2 thermal conductivity[J]. Chemical Engineering Research and Design, 2017, 122: 164-175.
[45] ABDOLBAGHI S, BARATI-HAROONI A, NAJAFI-MARGHMALEKI A. Improving the prediction ability of reference correlation for viscosity of carbon dioxide[J]. Journal of CO2 Utilization, 2019, 31: 106-114.
[46] ROSTAMIAN H, LOTFOLLAHI M N. A new correlation method for estimating thermal conductivity of carbon dioxide in liquid, vapor and supercritical phases[J]. Periodica Polytechnica Chemical Engineering, 2020, 64(1): 146-152.
[47] WANG L, PAN Y C, DER LEE J, et al. Experimental investigation in the local heat transfer of supercritical carbon dioxide in the uniformly heated horizontal miniature tubes[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120136.
[48] 朱兵国, 吴新明, 张良, 等. 垂直上升管内超临界CO2流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290.
ZHU Bingguo, WU Xinming, ZHANG Liang, et al. Flow and heat transfer characteristics ofsupercritical CO2 in vertical tube[J]. CIESC Journal, 2019, 70(4): 1282-1290.
[49] 杨温, 肖刚, 邢凯翔, 等. 超临界CO2换热特性实验研究[J]. 热力发电, 2018, 47(12): 29-34.
YANG Wen, XIAO Gang, XING Kaixiang, et al. Experi-mental study on heat transfer characteristics of supercritical CO2[J]. Thermal Power Generation, 2018, 47(12): 29-34.
[50] 王振川, 胥蕊娜, 熊超, 等. 超临界压力CO2竖直管内传热恶化抑制实验[J]. 清华大学学报(自然科学版), 2018, 58(12): 1101-1106.
WANG Zhenchuan, XU Ruina, XIONG Chao, et al. Inhibition of heat transfer deterioration in supercritical pressure CO2 vertical tube[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(12): 1101-1106.
[51] 吴新明. 超临界二氧化碳在竖直圆管内流动传热特性实验研究[D]. 北京: 华北电力大学, 2019: 1.
WU Xinming. Experimental study on heat transfer characteristics of supercritical carbon dioxide flow in a vertical circular tube[D]. Beijing: North China Electric Power University, 2019: 1.
[52] KLINE N, FEUERSTEIN F, TAVOULARIS S. Onset of heat transfer deterioration in vertical pipe flows of CO2 at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1056-1068.
[53] ZHANG Q, LI H, KONG X, et al. Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux[J]. International Journal of Heat and Mass Transfer, 2018, 122: 469-482.
[54] 颜建国, 朱凤岭, 郭鹏程, 等. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787.
YAN Jianguo, ZHU Fengling, GUO Pengcheng, et al. Convective heat transfer of supercritical CO2 flowing a mini circular tube underhigh heat flux and low mass flux conditions[J]. CIESC Journal, 2019, 70(5): 1779-1787.
[55] LIU X, XU X, LIU C, et al. Flow structure at different stages of heat transfer deterioration with upward, mixed turbulent flow of supercritical CO2 heated in vertical straight tube[J]. Applied Thermal Engineering, 2020, 181: 115987.
[56] SINGH I, CHATOORGOON V. Experiments and analyses of supercritical CO2 flow instability with study of wall heat-storage and dimensionless parameters[J]. Applied Thermal Engineering, 2021, 186: 116378.
[57] 张海松, 朱鑫杰, 朱兵国, 等. 浮升力和流动加速对超临界CO2管内流动传热影响[J]. 物理学报, 2020, 69(6): 126-135.
ZHANG Haisong, ZHU Xinjie, ZHU Bingguo, et al. Effect of buoyancy lift and flow acceleration on flow heat transfer in supercritical CO2 tube[J]. Acta Physica Sinica, 2020, 69(6): 126-135.
[58] FAN Y H, TANG G H. Numerical investigation on heat transfer of supercritical carbon dioxide in a vertical tube under circumferentially non-uniform heating[J]. Applied Thermal Engineering, 2018, 138: 354-364.
[59] 吴家荣, 李红智, 杨玉, 等. 非均匀加热管内超临界CO2传热特性研究[J]. 热力发电, 2019, 48(11): 22-29.
WU Jiarong, LI Hongzhi, YANG Yu, et al. Heat transfer characteristics of supercritical CO2 in a non-uniform heated tube[J]. Thermal Power Generation, 2019, 48(11): 22-29.
[60] 庄晓如, 徐心海, 杨智, 等. 高温吸热管内超临界CO2传热特性的数值模拟[J]. 物理学报, 2021, 70(3): 176-188.
ZHUANG Xiaoru, XU Xinhai, YANG Zhi, et al. Numerical simulation of heat transfer characteristics of supercritical CO2 in high temperature endothermic tube[J]. Acta Physica Sinica, 2021, 70(3): 176-188.
[61] BOVARD S, ABDI M, NIKOU M R K, et al. Numerical investigation of heat transfer in supercritical CO2 and water turbulent flow in circular tubes[J]. The Journal of Supercritical Fluids, 2017, 119: 88-103.
[62] VISWANATHAN K, KRISHNAMOORTHY G. The effects of wall heat fluxes and tube diameters on laminar heat transfer rates to supercritical CO2[J]. International Communications in Heat and Mass Transfer, 2021, 123: 105197.
[63] EZE C, KHAN S A, TING LAU K, et al. Numerical study on the heat transfer deterioration and its mitigations for supercritical CO2 flowing in a horizontal miniature tube[J]. Annals of Nuclear Energy, 2021, 151: 107982.
[64] 刘新新, 山訸, 张世杰, 等. 竖直直管和螺旋管内超临界CO2换热特性对比研究[J]. 工程热物理学报, 2020, 41(1): 55-60.
LIU Xinxin, SHAN He, ZHANG Shijie, et al. Comparison of supercritical CO2 heat transfer characteristics in vertical and spiral pipe[J]. Journal of Engineering Thermophysics, 2020, 41(1): 55-60.
[65] 闫晨帅, 徐进良. 超临界压力CO2在水平圆管内流动传热数值分析[J]. 物理学报, 2020, 69(4): 136-145.
YAN Chenshuai, XU Jinliang. Numerical analysis of flow heat transfer of CO2 under supercritical pressure in horizontal circular pipe[J]. Acta Physica Sinica, 2020, 69(4): 136-145.
[66] ZHU B, XU J, YAN C, et al. The general supercritical heat transfer correlation for vertical up-flow tubes: K number correlation[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119080.
[67] SHIRALKAR B S, GRIFFITH P. The deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes[J]. Journal of Heat Transfer, 1969, 91(1): 27-36.
[68] KIM J K, JEON H K, LEE J S. Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes[J]. Nuclear Engineering & Design, 2007, 237: 1795-1802.
[69] GRABEZHNAYA V A, KIRILLOV P L. Heat transfer under supercritical pressures and heat transfer deteriora-tion boundaries[J]. Thermal Engineering, 2006, 53(4): 296-301.
[70] JACKSON JD H W, FEWSTER J, WATSON A, et al. Heat transfer to supercritical pressure fluids[R]. Rijeka, Croatia: UK Atomic Energy Authority, 1975: 34.
[71] JACKSON J D, HALL W B. Influences of buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions[J]. Institution of Mechanical Engineers, Conference Publications, 1979, 2: 613-640.
[72]KIM D E, KIM M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349.
[73] 刘生晖, 黄彦平, 刘光旭, 等. 浮升力因子和流动加速因子改进及其在超临界流体混合对流传热中的应用[J]. 中国科学: 技术科学, 2017, 47(2): 176-189.
LIU Shenghui, HUANG Yanping, LIU Guangxu, et al. New improvements of buoyancy and flow acceleration parameters and their applications on mixed convective heattransfer to supercritical fluids[J]. Scientia Sinica Technologica, 2017, 47: 176-189.
[74] 刘光旭, 黄彦平, 王俊峰, 等. 浮升力效应和流动加速效应对超临界二氧化碳传热影响理论分析[J]. 核动力工程, 2018, 39(6): 34-38.
LIU Guangxu, HUANG Yanping, WANG Junfeng, et al. Theoretical analysis of influence of buoyancy effect and flow acceleration effect on heat transfer of supercritical carbon dioxide[J]. Nuclear Power Engineering, 2018, 39(6): 34-38.
[75] ADEBIYI G A, HALL W B. Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe[J]. International Journal of Heat and Mass Transfer, 1976, 19(7): 715-720.
[76] JONATHAN F. Mixed forced and free convective heat transfer to supercritical pressure fluids flowing in vertical pipes[D]. Manchester, Britain: The University of Manchester, 1976: 1.
[77] BAE Y Y, KIM H Y, KANG D J. Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube[J]. Experi-mental Thermal and Fluid Science, 2010, 34(8): 1295-1308.
[78] 赵哲华. 水平管内超临界压力CO2流动与传热特性的数值研究[D]. 济南: 山东大学, 2019: 1.
ZHAO Zhehua. Numerical study on supercritical pressure CO2 flow and heat transfer characteristics in horizontal pipe[D]. Jinan: Shandong University, 2019: 1.
[79] GUO J, XIANG M, ZHANG H, et al. Thermal-hydraulic characteristics of supercritical pressure CO2 in vertical tubes under cooling and heating conditions[J]. Energy, 2019, 170: 1067-1081.
[80] MCELIGOT D M, COON C W, PERKINS H C. Relaminarization in tubes[J]. International Journal of Heat and Mass Transfer, 1970, 13(2): 431-433.
[81] MURPHY H D, CHAMBERS F W, MCELIGOT D M. Laterally converging flow. Part 1. Mean flow[J]. Journal of Fluid Mechanics, 2006, 127: 379-401.
[82] 刘生晖, 黄彦平, 刘光旭, 等. 不同状态方程对超临界二氧化碳强迫对流传热中流动加速因子的影响[J]. 核动力工程, 2019, 40(1): 18-22.
LIU Shenghui, HUANG Yanping, LIU Guangxu, et al. Effect of different equations of state on flow acceleration factor in supercritical carbon dioxide forced transfer heat[J]. Nuclear Power Engineering, 2019, 40(1): 18-22.
[83] BAE Y Y, KIM H Y, YOO T H. Effect of a helical wire on mixed convection heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 340-351.
[84] 赵振兴, 林原胜, 王苇, 等. 涡流发生器对超临界CO2传热和流阻性能影响的数值模拟研究[J]. 原子能科学技术, 2017, 51(4): 627-635.
ZHAO Zhenxing, LIN Yuansheng, WANG Wei, et al. Numerical simulation on effect of vortex generator on heat transfer and flow of supercritical CO2[J]. Atomic Energy Science and Technology, 2017, 51(4): 627-635.

相似文献/References:

[1]李兴龙.石门电厂1号炉水冷壁热疲劳分析[J].热力发电,2001,(04):0.
[2]陈渝楠,张一帆,刘文娟,等.超临界二氧化碳火力发电系统模拟研究[J].热力发电,2017,(2):22.
 CHEN Yunan,ZHANG Yifan,LIU Wenjuan,et al.Simulation study on supercritical carbon dioxide thermal power system[J].Thermal Power Generation,2017,(10):22.
[3]邓成刚,陈宇明,陈 坤,等.50 MW超临界二氧化碳燃煤电厂热经济性分析[J].热力发电,2021,50(12):160.[doi:10.19666/j.rlfd.202106108 ]
 DENG Chenggang,CHEN Yuming,CHEN Kun,et al.Thermoeconomic analysis for 50 MW supercritical carbon dioxide coal-fired power plant[J].Thermal Power Generation,2021,50(10):160.[doi:10.19666/j.rlfd.202106108 ]
[4]吴佐莲,张一帆,张 纯,等.煤基超临界二氧化碳热电联产机组调峰能力研究[J].热力发电,2018,(6):29.[doi:10.19666/j.rlfd.201802067 ]
 WU Zuolian,ZHANG Yifan,ZHANG Chun,et al.Study on peak regulation capacity of a coal-fired supercritical carbon dioxide cogeneration unit[J].Thermal Power Generation,2018,(10):29.[doi:10.19666/j.rlfd.201802067 ]
[5]郑华雷,吴雪蓓,刘 斌.超临界二氧化碳闭式循环性能仿真研究及应用[J].热力发电,2020,49(04):63.[doi:10.19666/j.rlfd.201909248 ]
 ZHENG Hualei,WU Xuebei,LIU Bin.Study and application of performance simulation of supercritical CO2 closed cycles[J].Thermal Power Generation,2020,49(10):63.[doi:10.19666/j.rlfd.201909248 ]
[6]杨天锋,向铎,袁鹏,等. 高温储能金属氧化物研究综述及其与超临界二氧化碳循环耦合研究 [J].热力发电,2021,50(预出版):1.[doi:10.19666/j.rlfd.202108153]
 YANG Tianfeng,XIANG Duo,YUAN Peng,et al. A review on studies on metal oxides for high-temperature energy storage and its coupling with supercritical carbon dioxide power cycle [J].Thermal Power Generation,2021,50(10):1.[doi:10.19666/j.rlfd.202108153]
[7]肖 博,朱忠亮,李瑞涛,等.超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展[J].热力发电,2020,49(10):30.[doi:10.19666/j.rlfd.202006155 ]
 XIAO Bo,ZHU Zhongliang,LI Ruitao,et al.Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid[J].Thermal Power Generation,2020,49(10):30.[doi:10.19666/j.rlfd.202006155 ]
[8]刘建峰,桑丽霞,王凯音,等.超临界二氧化碳太阳能热发电系统中集热蓄热颗粒及其性质研究现状[J].热力发电,2020,49(10):38.[doi:10.19666/j.rlfd.202006174 ]
 LIU Jianfeng,SANG Lixia,WANG Kaiyin,et al.Research status of properties of particles as thermal energy storage medium in supercritical carbon dioxide cycle for concentrated solar power[J].Thermal Power Generation,2020,49(10):38.[doi:10.19666/j.rlfd.202006174 ]
[9]张蓉芳,赵民富,王晓丁,等.钠冷快堆耦合超临界二氧化碳布雷顿循环中的PCHE研究进展[J].热力发电,2020,49(10):48.[doi:10.19666/j.rlfd.202006176 ]
 ZHANG Rongfang,ZHAO Minfu,WANG Xiaoding,et al.Study on PCHE in advances sodium cold fast reactor coupled supercritical carbon dioxide Brayton cycle: a review[J].Thermal Power Generation,2020,49(10):48.[doi:10.19666/j.rlfd.202006176 ]
[10]周熙宏,朱 超,吴鹏举,等.变湍流Prandtl数模型在垂直上升管内超临界水传热数值模拟中的应用[J].热力发电,2020,49(7):98.[doi:10.19666/j.rlfd.201909216 ]
 ZHOU Xihong,ZHU Chao,WU Pengju,et al.Application of variable turbulent Prandtl number model in numerical simulation of supercritical water heat transfer in vertical upward tubes[J].Thermal Power Generation,2020,49(10):98.[doi:10.19666/j.rlfd.201909216 ]
[11]姜超,董鹤鸣,谢敏,等.超临界二氧化碳传热恶化现象研究进展[J].热力发电,2021,50(预出版):1.[doi:10.19666/j.rlfd.202104057]
 JIANG Chao,DONG Heming,XIE Min,et al.Research progress on heat transfer deterioration of supercritical carbon dioxide[J].Thermal Power Generation,2021,50(10):1.[doi:10.19666/j.rlfd.202104057]

备注/Memo

姜超(1999),男,硕士研究生,主要研究方向为超临界二氧化碳工质流量计量,20s102099@stu.hit.edu.cn。

更新日期/Last Update: 2021-10-15