[1]邓成刚,李伟科,梁展鹏,等.太阳光热发电-超临界二氧化碳循环系统经济性分析与优化[J].热力发电,2021,50(05):59-66.[doi:10.19666/j.rlfd.202010256]
 DENG Chenggang,LI Weike,LIANG Zhanpeng,et al.Economic analysis and optimization for concentrated solar power-supercritical carbon dioxide Brayton cycle system[J].Thermal Power Generation,2021,50(05):59-66.[doi:10.19666/j.rlfd.202010256]
点击复制

太阳光热发电-超临界二氧化碳循环系统经济性分析与优化

参考文献/References:

[1] GONZALO A P, MARUG?N A P, M?RQUEZ F P G. A review of the application performances of concentrated solar power systems[J]. Applied Energy, 2019, 255: 113893.
[2] JU X, XU C, HU Y, et al. A review on the development of photovoltaic/concentrated solar power (PV-CSP) hybrid systems[J]. Solar Energy Materials and Solar Cells, 2017, 161: 305-327.
[3] BAHAR H, ABDELILAH Y, COLLIER U, et al. Renewables 2018: analysis and forecasts to 2023[M]. International Energy Agency, 2018: 35-100.
[4] Renewable Energy World. SAWIN J L, MARTINOT E. Renewables bounced back in 2010, finds REN21 global report[J/OL]. (2011-9-29)[2020-12-28]. https://www.ren ewableenergyworld.com/2011/09/29/renewables-bounced- back-in-2010-finds-ren21-global-report/# gref.
[5] BEHAR O, KHELLAF A, MOHAMMEDI K. A review of studies on central receiver solar thermal power plants[J]. Renewable and sustainable energy reviews, 2013, 23: 12-39.
[6] LIU M, ZHANG X, YANG K, et al. Optimization and comparison on supercritical CO2 power cycles integrated within coal-fired power plants considering the hot and cold end characteristics[J]. Energy Conversion and Management, 2019, 195: 854-865.
[7] TURCHI C S, MA Z, NEISES T W, et al. Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems[J]. Journal of Solar Energy Engineering, 2013, 135(4) : 41007.1-41007.7.
[8] LIU Y, WANG Y, HUANG D. Supercritical CO2 Brayton cycle: a state-of-the-art review[J]. Energy, 2019, 189: 115900.
[9] WANG K, HE Y L, ZHU H H. Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts[J]. Applied Energy, 2017, 195: 819-836.
[10] ZHAO Q, MECHERI M, NEVEUX T, et al. Selection of a proper equation of state for the modeling of a supercritical CO2 Brayton cycle: consequences on the process design[J]. Industrial & Engineering Chemistry Research, 2017, 56(23): 6841-6853.
[11] SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1 100 K at pressures up to 800 MPa[J]. Journal of physical and chemical reference data, 1996, 25(6): 1509-1596.
[12] ZHAO H, DENG Q, HUANG W, et al. Thermodynamic and economic analysis and multi-objective optimization of supercritical CO2 Brayton cycles[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(8): 081602.1-081602.9.
[13] MA Y, MOROZYUK T, LIU M, et al. Optimal integration of recompression supercritical CO2 Brayton cycle with main compression intercooling in solar power tower system based on exergoeconomic approach[J]. Applied Energy, 2019, 242: 1134-1154.
[14] 何欣欣, 薛志恒, 陈会勇, 等. 间接式超临界二氧化碳塔式太阳能热发电系统仿真优化[J]. 热力发电, 2019, 48(7): 53-58.
CHEN Xinxin, XUE Zhiheng, CHEN Huiyong, et al. Simulation and optimization of solar thermal tower power system with indirect-heated supercritical CO2 Brayton cycles[J]. Thermal Power Generation, 2019, 48(7): 53-58.
[15] YANG Z, KANG R, LUO X, et al. Rigorous modelling and deterministic multi-objective optimization of a super-critical CO2 power system based on equation of state and non-linear programming[J]. Energy Conversion and Management, 2019, 198: 111798.
[16] ZURITA A, MATA-TORRES C, VALENZUELA C, et al. Techno-economic evaluation of a hybrid CSP+ PV plant integrated with thermal energy storage and a large-scale battery energy storage system for base generation[J]. Solar Energy, 2018, 173: 1262-1277.
[17] MOHAMMADI K, MCGOWAN J G, SAGHAFIFAR M. Thermoeconomic analysis of multi-stage recuperative Brayton power cycles: Part I-hybridization with a solar power tower system[J]. Energy conversion and Manage-ment, 2019, 185: 898-919.
[18] AL-SULAIMAN F A, ATIF M. Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower[J]. Energy, 2015, 82: 61-71.
[19] SAGHAFIFAR M, GADALLA M. Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: A comparative analysis[J]. Energy, 2016, 112: 698-714.
[20] WU C, WANG S, LI J. Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants[J]. Energy Conversion and Management, 2018, 171: 936-952.
[21] JI J, TANG H, JIN P. Economic potential to develop concen-trating solar power in China: a provincial assessment[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109279.
(责任编辑 李园)

相似文献/References:

[1]陈 博,倪明江,应振镇,等.基于太阳能颗粒集热的超临界CO2流化床换热器模拟研究[J].热力发电,2019,(07):70.[doi:10.19666/j.rlfd.201901002 ]
 CHEN Bo,NI Mingjiang,YING Zhenzhen,et al.Numerical study on heat exchanger of supercritical CO2 Brayton cycle fluidized bed boiler based on solar particle-receiver[J].Thermal Power Generation,2019,(05):70.[doi:10.19666/j.rlfd.201901002 ]
[2]余小兵,杨 利,居文平,等.内燃机余热回收冷热电联供系统性能研究[J].热力发电,2022,51(02):49.[doi:10.19666/j.rlfd.202106114 ]
 YU Xiaobing,YANG Li,JU Wenping,et al.Performance analysis on a combined cooling, heating and power system for waste heat recovery of internal combustion engine[J].Thermal Power Generation,2022,51(05):49.[doi:10.19666/j.rlfd.202106114 ]

备注/Memo

邓成刚(1974),男,教授级高工,主要研究方向为新型热力系统设计与优化,dengchenggang@gedi.com.cn。

更新日期/Last Update: 2021-05-15