[1]张旭伟,白文刚,吴家荣,等.采用超临界二氧化碳动力循环回收燃气轮机排气余热的系统优化研究[J].热力发电,2021,50(05):43-50.[doi:10.19666/j.rlfd.202009236]
 ZHANG Xuwei,BAI Wengang,WU Jiarong,et al.Optimization of system using supercritical carbon dioxide power cycle to recover waste heat from gas turbine exhaust[J].Thermal Power Generation,2021,50(05):43-50.[doi:10.19666/j.rlfd.202009236]
点击复制

采用超临界二氧化碳动力循环回收燃气轮机排气余热的系统优化研究

参考文献/References:

[1] PILAVACHI P A. Power generation with gas turbine systems and combined heat and power[J]. Applied Thermal Engineering, 2000, 20(15/16): 1421-1429.
[2] CHACARTEGUI R, S?NCHEZ D, MU?OZ J M, et al. Alternative ORC bottoming cycles FOR combined cycle power plants[J]. Applied Energy, 2009, 86(10): 2162-2170.
[3] CAO Y, DAI Y P. Comparative analysis on off-design performance of a gas turbine and ORC combined cycle under different operation approaches[J]. Energy Conversion and Management, 2017, 135: 84-100.
[4] 黄潇立, 王俊峰, 臧金光. 超临界二氧化碳布雷顿循环热力学特性研究[J]. 核动力工程, 2016(3): 34-38.
HUANG Xiaoli, WANG Junfeng, ZANG Jinguang. Thermodynamic analysis of coupling supercritical carbon dioxide Brayton cycles[J]. Nuclear Power Engineering, 2016(3): 34-38.
[5] 梁墩煌, 张尧立, 赵英汝, 等. 压力对超临界二氧化碳布雷顿循环系统的影响[J] 哈尔滨工程大学学报, 2017, 38(4): 578-582.
LIANG Dunhuang, ZHANG Yaoli, ZHAO Yingru, et al. Influence of pressure on the thermal performance of the S-CO2 Brayton cycle[J]. Journal of Harbin Engineering University, 2017, 38(4): 578-582.
[6] 梁墩煌, 张尧立, 郭奇勋, 等. 核反应堆系统中以超临界二氧化碳为工质的热力循环过程的建模与分析[J]. 厦门大学学报(自然科学版), 2015, 54(5): 608-613.
LIANG Dunhuang, ZHANG Yaoli, GUO Qixun, et al. Modeling and analysis of nuclear reactor system using supercritical CO2 Brayton cycle[J]. Journal of Xiamen University (Natural Science), 2015, 54(5): 608-613.
[7] DOSTAL V, DRISCOLL M J, HEJZLAR P. A supercritical carbon dioxide cycle for next generation nuclear reactors[D]. Massachusetts: Massachusetts Institute of Technology, 2004: 27.
[8] DOSTAL V, HEJZLAR P, DRISCOLL M J. The supercri-tical carbon dioxide power cycle: comparison to other advanced power cycles[J]. Nuclear Technology, 2006, 154(3): 283-301.
[9] 段承杰, 杨小勇, 王捷. 超临界二氧化碳布雷顿循环的参数优化[J]. 原子能科学技术, 2011, 45(12): 1489.
DUAN Chengjie, YANG Xiaoyong, WANG Jie. Parameters optimization of supercritical carbon dioxide Brayton cycle[J]. Atomic Energy Science and Technology, 2011, 45(12): 1489.
[10] CHACARTEGUI R, DE ESCALONA J M M, S?NCHEZ D, et al. Alternative cycles based on carbon dioxide for central receiver solar power plants[J]. Applied Thermal Engineering, 2011, 31(5): 872-879.
[11] PADILLA R V, TOO Y C S, BEATH A, et al. Effect of pressure drop and reheating on thermal and exergetic performance of supercritical carbon dioxide Brayton cycles integrated with a solar central receiver[J]. Journal of Solar Energy Engineering, 2015, 137(5): 051012.
[12] 何欣欣, 薛志恒, 陈会勇, 等. 间接式超临界二氧化碳塔式太阳能热发电系统仿真优化[J]. 热力发电, 2019, 48(7): 53-58.
HE Xinxin, XUE Zhiheng, CHEN Huiyong, et al. Simulation and optimization of solar thermal tower power system with indirect-heated supercritical CO2 Brayton cycles[J]. Thermal Power Generation, 2019, 48(7): 53-58.
[13]陈渝楠, 张一帆, 刘文娟, 等. 超临界二氧化碳火力发电系统模拟研究[J]. 热力发电, 2017, 46(2): 22-27.
CHEN Yunan, ZHANG Yifan, LIU Wenjuan, et al. Simulation study on supercritical carbon dioxide thermal power system[J]. Thermal Power Generation, 2017, 46(2): 22-27.
[14] 白文刚, 李红智, 张磊, 等. 一种改进的超临界二氧化碳燃煤发电系统及其?分析[J]. 热力发电, 2020, 49(10): 114-119.
BAI Wengang, LI Hongzhi, ZHANG Lei, et al. Exergy analysis for an improved recompression supercritical CO2 cycle for coal-fired power plant[J]. Thermal Power Generation, 2020, 49(10): 114-119.
[15]BAI W G, ZHANG Y F, YANG Y, et al. 300 MW boiler design study for coal-fired supercritical CO2 Brayton cycle[J]. Applied Thermal Engineering, 2018, 135: 66-73.
[16] ZHANG Y F, LI H Z, HAN W L, et al. Improved design of supercritical CO2 Brayton cycle for coal-fired power plant[J]. Energy, 2018, 155: 1-14.
[17] 陶志强, 赵庆, 唐豪杰, 等. 应用于工业余热的超临界二氧化碳布雷顿循环系统的热力学和?分析[J]. 中国电机工程学报, 2019, 39(23): 6944-6951.
TAO Zhiqiang, ZHAO Qing, TANG Haojie, et al. Thermodynamic and exergetic analysis of supercritical carbon dioxide Brayton cycle system applied to industrial waste heat recovery[J]. Proceedings of the CSEE, 2019, 39(23): 6944-6951.
[18] CAO Y, REN J Q, SANG Y Q, et al. Thermodynamic analysis and optimization of a gas turbine and cascade CO2 combined cycle[J]. Energy Conversion and Manage-ment, 2017, 144: 193-204.
[19] HOU S Y, WU Y D, ZHOU Y D, et al. Performance analysis of the combined supercritical CO2 recompression and regenerative cycle used in waste heat recovery of marine gas turbine[J]. Energy Conversion and Management, 2017, 151: 73-85.
[20] CAO Y, RATTNER A S, DAI Y P. Thermoeconomic analysis of a gas turbine and cascaded CO2 combined cycle using thermal oil as an intermediate heat-transfer fluid[J]. Energy, 2018, 162: 1253-1268.
[21] Solar Turbines. Industrial power generation taurus 60[EB/OL]. [2020-09-10]. https://www.solarturbines. com/en_US/products/power-generation-packages/taurus-60.html.
(责任编辑 李园)

相似文献/References:

[1]司派友,左 川.联合循环机组汽轮机深度滑参数停机[J].热力发电,2009,(06):0.
[2]施延洲,杨国荣,姚啸林,等.联合循环机组燃气透平进气温度的计算[J].热力发电,2009,(02):0.
[3]苏 磊,张 红.住宅小区天然气热电冷三联产方案及其技术经济性能分析[J].热力发电,2006,(05):0.
[4]林 鸿,杨 承,杨泽亮,等.燃气-蒸汽联合循环进气喷水冷却经济评价数据集成方法[J].热力发电,2005,(10):0.
[5]陈 鹏,甘孟必,高 岩.燃机进气安全隔离滤网钢丝失效原因分析[J].热力发电,2004,(12):0.
[6]忻奇峰.燃气轮机热电联产系统的应用和完善[J].热力发电,2005,(01):0.
[7]刘晓宏,杨寿敏,马汀山.降低联合循环机组整体性能试验不确定度的措施[J].热力发电,2005,(02):0.
[8]赵剑云,潘 维,池作和.大型燃气轮机余热锅炉进口烟道速度均匀性研究[J].热力发电,2004,(08):0.
[9]喻志强,巩桂亮.PG9171E燃气轮机燃油系统振荡故障分析[J].热力发电,2003,(06):0.
[10]薛建中,马光宇.一种新型分散控制系统在联合循环电厂中的应用[J].热力发电,2002,(06):0.

备注/Memo

张旭伟(1993),男,硕士,主要研究方向为超临界二氧化碳动力循环系统优化,zhangxuwei@tpri.com.cn。

更新日期/Last Update: 2021-05-15