[1]王祖林,梁占伟,张 磊,等.热电联产机组新型高效耦合供热技术研究[J].热力发电,2022,51(01):130-138.[doi:10.19666/j.rlfd.202107145]
 WANG Zulin,LIANG Zhanwei,ZHANG Lei,et al.Study on new high-efficiency coupling heating technology of cogeneration unit[J].Thermal Power Generation,2022,51(01):130-138.[doi:10.19666/j.rlfd.202107145]
点击复制

热电联产机组新型高效耦合供热技术研究

参考文献/References:

[1] 时斌, 王宁玲, 李晓恩, 等. 供水温度对高背压热电联产系统能耗水平的影响[J]. 化工进展, 2018, 37(1): 96-104.
SHI Bin, WANG Ningling, LI Xiao’en, et al. Impacts of water supply temperature on energy consumption of high back pressure cogeneration system[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 96-104.
[2] 戈志华, 孙诗梦, 万燕, 等. 大型汽轮机组高背压供热改造适用性分析[J]. 中国电机工程学报, 2017, 37(11): 3216-3222.
GE Zhihua, SUN Shimeng, WAN Yan, et al. Applicability analysis of high back-pressure heating retrofit for large-scale steam turbine unit[J]. Proceedings of the CSEE, 2017, 37(11): 3216-3222.
[3] 杨志平, 时斌, 李晓恩, 等. 热负荷分配比例对抽凝-背压供热机组能耗影响[J]. 化工进展, 2018, 37(3): 875-883.
YANG Zhiping, SHI Bin, LI Xiao’en, et al. Impacts of heat load distribution ratio on energy consumption of extraction steam- high back pressure heating cogeneration unit[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 875-883.
[4] 殷戈, 谭锐, 蔡培, 等. 背压机技术在供热优化改造中应用研究[J]. 汽轮机技术, 2018, 60(5): 389-392.
YIN Ge, TAN Rui, CAI Pei, et al. Research on application of back press technology in heat supply optimization[J]. Turbine Technology, 2018, 60(5): 389-392.
[5] 梁占伟, 张磊, 徐亚涛, 等. 双机联调抽汽-高背压联合供热?分析与优化[J]. 动力工程学报, 2020, 40(3): 247-255.
LIANG Zhanwei, ZHANG Lei, XU Yatao, et al. Exergy analysis and optimization of steam extraction-high back pressure combined heating for dual cogeneration units combined dispatching[J]. Journal of Chinese Society of Power Engineering, 2020, 40(3): 247-255.
[6] 陈建国, 谢争先, 付怀仁, 等. 300 MW机组汽轮机低压缸零出力技术[J]. 热力发电, 2018, 47(5): 106-110.
CHEN Jianguo, XIE Zhengxian, FU Huairen, et al. Zero output technology of the low-pressure cylinder of 300 MW unit turbine[J]. Thermal Power Generation, 2018, 47(5): 106-110.
[7] 王兴国, 蒋奎振, 韩中合, 等. 配置溴化锂吸收式热泵的供热机组热电关系模拟分析[J]. 热力发电, 2018, 47(8): 79-84.
WANG Xingguo, JIANG Kuizhen, HAN Zhonghe, et al. Thermoelectric relationship of a heat supply unit equipped with LiBr absorption heat pump[J]. Thermal Power Generation, 2018, 47(8): 79-84.
[8] 张学镭, 陈海平. 回收循环水余热的热泵供热系统热力性能分析[J]. 中国电机工程学报, 2013, 33(8): 1-8.
ZHANG Xuelei, CHEN Haiping. Thermodynamic analysis of heat pump heating supply systems with circulating water heat recovery[J]. Proceedings of the CSEE, 2013, 33(8): 1-8.
[9] YAN L, FU L, ZHANG S, et al. A new type of district heating system based on distributed absorption heat pumps[J]. Energy, 2011, 36(7): 4570-4576.
[10] 梁占伟, 杨承刚, 张磊, 等. 基于单耗理论的抽汽耦合高背压供热优化[J]. 中国电力, 2019, 52(12): 171-178.
LIANG Zhanwei, YANG Chenggang, ZHANG Lei, et al. Optimization of steam extraction combined high back pressure heating based on specific consumption theory[J]. Electric Power, 2019, 52(12): 171-178.
[11] 张攀, 杨涛, 杜旭, 等. 直接空冷机组高背压供热技术经济性分析[J]. 汽轮机技术, 2014, 56(3): 209-212.
ZHANG Pan, YANG Tao, DU Xu, et al. The economy analysis of the high back pressure heating technology on direct air-colled unit[J]. Turbine Technology, 2014, 56(3): 209-212.
[12] 梁占伟, 张磊, 徐亚涛, 等. 高背压供热机组供热温度特性与?分析[J]. 热力发电, 2020, 49(1): 17-25.
LIANG Zhanwei, ZHANG Lei, XU Yatao, et al. Heating temperature characteristics and exergy analysis for high back pressure heating unit[J]. Thermal Power Generation, 2020, 49(1): 17-25.
[13] 冯澎湃, 王宁玲, 杨志平, 等. 直接空冷高背压供热机组的梯级供热特性与冷端变工况协同优化[J]. 中国电机工程学报, 2016, 36(20): 5546-5554.
FENG Pengpai, WANG Ningling, YANG Zhiping, et al. Cascade heating characteristics and off-design collaborative optimization of direct air-cooled high pressure heat supply power units[J]. Proceedings of the CSEE, 2016, 36(20): 5546-5554.
[14] 包伟伟, 孙桂军, 李贺莱, 等. 600 MW超临界空冷 机组双背压低真空供热改造[J]. 热力透平, 2017(4): 252-257.
BAO Weiwei, SUN Guijun, LI Helai, et al. Retrofitting for low-vacuum heat supply with dual back-pressure in a 600 MW supercritical air-cooling unit[J]. Thermal Turbine, 2017(4): 252-257.
[15] LI P, GE Z, YANG Z, et al. District heating mode analysis based on an air-cooled combined heat and power station[J]. Entropy, 2014, 16(4): 1883-1901.
[16]余炎, 金益波, 杨红霞, 等. 超临界350 MW机组采用背压式给水泵小汽轮机工业供热研究[J]. 动力工程学报, 2018, 38(10): 849-854.
YU Yan, JIN Yibo, YANG Hongxia, et al. Study on taking backpressure BFPT exhaust of 350 MW supercritical unit as industrial heat source[J]. Journal of Chinese Society of Power Engineering, 2018, 38(10): 849-854.
[17] SONG Z P. Total energy system analysis of heating[J]. Energy, 2000, 25(9): 807-822.
[18] 火力发电厂技术经济指标计算方法: DL/T 904—2015[S]. 北京: 中国电力出版社, 2015: 1.
Calculation method of technical and economic indicators for thermal power plants: DL/T 904—2015[S]. Beijing: China Electric Power Press, 2015: 1.
(责任编辑 刘永强)

相似文献/References:

[1]何敬东.小型热电厂热电联产系统中的能量梯级利用[J].热力发电,2005,(08):0.
[2]忻奇峰.燃气轮机热电联产系统的应用和完善[J].热力发电,2005,(01):0.
[3]杨豫森,严俊杰,赵子谦,等.热电厂热电煤耗成本分摊方法的研究[J].热力发电,2004,(02):0.
[4]钟文琪,顾利锋.热电联产机组选型通用软件的开发[J].热力发电,2002,(03):0.
[5]尚玉琴,曹 智,宋之平.单耗分析理论在郑州热电厂200MW供热系统中的应用[J].热力发电,2001,(01):0.
[6]宁军贤,郭平生,唐贤健.确定多联产能量系统产品单位火用流经济成本的能质因数法及其应用[J].热力发电,2010,(02):41.
 NING Jun-xian,GUO Ping-sheng,TANG Xian-jian.THE ENERGY QUALITY FACTOR METHOD AND ITS APPLICATION IN DETERMINING ECONOMIC COST OF PRODUT’S UNIT EXERGY FLOWIN MULTIPLE CO-GENERATION SYSTEM[J].Thermal Power Generation,2010,(01):41.
[7]柳成文,黄锦涛,李文军.非再热式200 MW双抽汽式汽轮机组热力特性研究[J].热力发电,2010,(05):22.
 LIU Chengwen,HUANG Jintao,LI Wenjun.STUDY ON THERMODYNAMIC PROPERTIES OF NON-REHEAT 200 MW DOUBLE-EXTRACTION STEAM TURBINE UNITS[J].Thermal Power Generation,2010,(01):22.
[8]顾燕萍,王培红,吴占松.热化发电率与热电联产节煤量的关系[J].热力发电,2008,(09):5.
[9]罗必雄,梁辉.热电联产成本分摊探讨[J].热力发电,2012,(02):4.
 LUO Bixiong,LIANG Hui.AN APPROACH TO COSTSHARING IN COGENERATION OF HEAT AND ELECTRICITY[J].Thermal Power Generation,2012,(01):4.
[10]王武林,夏 明.地方热电企业提高综合效益的分析[J].热力发电,2003,(12):0.

备注/Memo

王祖林(1970),男,高级工程师,主要研究方向为大型火电厂新型高效多联供技术,zulin.wang@chnenergy.com.cn。

更新日期/Last Update: 2021-01-15