[1]向小凤,张 波,张向宇,等.烟气中Ce-Cu/γ-Al2O3催化剂催化CO氧化性能的研究[J].热力发电,2021,50(10):124-129.[doi:10.19666/j.rlfd.202012303 ]
 XIANG Xiaofeng,ZHANG Bo,ZHANG Xiangyu,et al.Study on CO oxidation performance of Ce-Cu/γ-Al2O3 catalyst in flue gas[J].Thermal Power Generation,2021,50(10):124-129.[doi:10.19666/j.rlfd.202012303 ]
点击复制

烟气中Ce-Cu/γ-Al2O3催化剂催化CO氧化性能的研究

参考文献/References:

[1] WATANABE H, YAMAMOTO J I, OKAZAKI K. NOx formation and reduction mechanisms in staged O2/CO2 combustion[J]. Combustion and Flame, 2010, 7: 1255-1263.
[2] 罗伟. 焦炭气化反应对煤粉空气深度分级燃烧NOx生成的影响[J]. 洁净煤技术, 2020, 26(2): 93-101.
LUO Wei. Effect of char gasification reaction on NOx formation in pulverized coal air-stage combustion[J]. Clean Coal Technology, 2020, 26(2): 93-101.
[3] FAN W D, LI Y, GUO Q H, et al. Coal-nitrogen release and NOx evolution in the oxidant staged combustion of coal[J]. Energy, 2017, 125: 417-426.
[4] MARIER P, DIBBS H P. The catalytic conversion of SO2 to SO3 by fly ash and the capture of SO2 by CaO and MgO[J]. Thermochimca Acta, 1974, 8(1): 155-165.
[5] BELO L P, ELLIOTT L K, STANGER R J, et al. High-temperature conversion of SO2 to SO3: homogeneous experiments and catalytic effect of fly ash from air and oxy-fuel firing[J]. Energy & Fuels, 2014, 28(11): 7243-7251.
[6] 王永兵, 戴高峰, 单志亮, 等. α-Fe2O3表面SO2吸附及SO3催化生成的密度泛函分析[J]. 洁净煤技术, 2020, 26(2): 1-8.
WANG Yongbing, DAI Gaofeng, SHAN Zhiliang, et al. DFT study on the adsorption of SO2 and catalytic formation of SO3 on the α-Fe2O3 surface[J]. Clean Coal Technology, 2020, 26(2): 1-8.
[7] 李宏亮. 富氢条件下CO选择性氧化高效催化剂涂层和微小型反应器研究[D]. 上海: 华东理工大学, 2011: 20.
LI Hongliang. Catalyst coating and micro-reactor for preferential CO oxidation[D]. Shanghai: East China University of Science and Technology, 2011: 20.
[8] 王永钊, 赵永祥, 刘滇生. 低温CO催化氧化催化剂研究进展[J]. 环境污染治理技术与设备, 2003, 4(8): 8-12.
WANG Yongzhao, ZHAO Yongxiang, LIU Diansheng. The research progress in low temperature catalytic oxidation catalysts of carbon monoxide[J]. Techniques and Equipment for Environmental Pollution Control, 2003, 4(8): 8-12.
[9] 刘东亮, 刘道胜, 张晓彤, 等. CO低温氧化负载金催化剂研究进展[J]. 化工进展, 2007, 26(8): 1110.
LIU Dongliang, LIU Daosheng, ZHANG Xiaotong, et al. Studies on low-temperature oxidation of CO by Au catalyst[J]. Chemical Industry and Engineering Progress, 2007, 26(8): 1110.
[10] 毕玉水, 吕功煊. 一氧化碳低温催化氧化研究进展[J]. 分子催化, 2003, 17(4): 313-320.
BI Yubing, LYU Gongxuan. Advances of catalytic CO oxidation at low-temperature[J]. Journal of Molecular Catalysis (China), 2003, 17(4): 313-320.
[11] MONTINI T, MELCHIONNA M M, FORNSIERO P. Fundamentals and catalytic applications of CeO2- based materials[J]. Chemical Reviews, 2016, 116(10): 5987-6041.
[12] NIE L, MEI D H, XIONG H F, et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low temperature CO oxidation[J]. Science, 2017, 358: 1419-1423.
[13] AVGOUROPOULOS G, IOANNIDES T. Effect of synthesis parameters on catalytic properties of CuO-CeO2[J]. Applied Catalysis B Environmental, 2006, 67(1/2): 1-11.
[14] G?MEZ-CORT?S A, M?RQUEZ Y, ARENAS-ALATORRE J, et al. Selective CO oxidation in excess of H2 over high-surface area CuO/CeO2 catalysts[J]. Catalysis Today, 2008, 133: 743-749.
[15] ZENG S H, LIU Y. Nd- or Zr- modified CuO-CeO2/ Al2O3/FeCrAl monolithic catalysts for preferential oxidation of carbon monoxide in hydrogen-rich gases[J]. Applied Surface Science, 2008, 254(15): 4879-4885.
[16] AVOGAOUROPOLOS G, IOANNIDES T, PAPADO-POULOU C, et al. A comparative study of Pt/γ-Al2O3, Au/γ-Fe3O4 and CuO-CeO2 catalysts for the selec-tive oxidation of carbon monoxide in excess hydrogen[J]. Catalysis Today, 2002, 75(1/4): 157-167.
[17] HERNANDEZ J A, GOMEZ S A, ZEPEDA T A, et al. Insight into the deactivation of Au/CeO2 catalysts studied by in situ spectroscopy during the CO-PROX reaction[J]. ACS Catalysis, 2015, 5(7): 4003-4012.
[18] 刘小元. CeO2基催化剂的制备及其CO氧化性能研 究[D]. 合肥: 中国科学技术大学, 2019: 20.
LIU Xiaoyuan. Synthesize of CeO2 based catalysts and their CO oxidation[D]. Hefei: University of Science and Technology of China, 2019: 20.
[19] LUO M F, FANG P, HE M, et al. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. Journal of Molecular Catalysis A Chemical, 2005, 239(1/2): 243-248.
[20] ZHOU X D, HUEBNER W. Size induced lattice relaxation in CeO2 nanoparticles[J]. Applied Physics Letters, 2001, 79(21): 3512-3514.
[21] LEE W J, BORDOLOI A, PATEL J, et al. The effect of metal additives in Cu/Zn/Al2O3 as a catalyst for low-pressure methanol synthesis in an oil-cooled annulus reactor[J]. Catalysis Today, 2020, 343: 183-190.
[22] KUNTIMA K, THANES U, UNALOME W H. Methanol synthesis in a slurry phase reactor over Cu/ZnO/Al2O3 catalyst[J]. Advanced Materials Research, 2014, 931/932: 27-31.
[23] 林玥廷, 张维奇, 林英明, 等. 考虑燃煤机组健康度与负荷转移的连锁故障供防控策略[J]. 电力系统保护与控制, 2019, 47(17): 101-108.
LIN Yueting, ZHANG Weiqi, LIN Yingming, et al. Control strategy of cascading failures considering the health degree of coal-fired units and load transfer[J]. Power System Protection and Control, 2019, 47(17): 101-108.
[24] WANG Y F, LIU Z Q, WANG R G. NaBH4 surface modification on CeO2 nanorods supported transition metal catalysts for low temperature CO oxidation[J]. ChemCatChem, 2020, 12(17): 4304-4316.
[25] LU R, HE L, WANG Y, et al. Promotion effects of nickel-doped Al2O3-nanosheet-supported Au catalysts for CO oxidation[J]. Chinese Journal of Catalysis, 2020, 41(2): 350-356.
[26] 朱翰超, 马蕊. 考虑需求侧管理的冷热电联供微电网优化配置方法[J]. 电力系统保护与控制, 2019, 47(2): 139-146.
ZHU Hanchao, MA Rui. Optimal configuration method of CCHP microgrid considering demand side management[J]. Power System Protection and Control, 2019, 47(2): 139-146.
[27] DAR M A, KRISHNAMURTY S, PAL S. Endohedrally doped gold nanocages: efficient catalysts for O2 activation and CO oxidation[J]. Physical Chemistry Chemical Physics, 2016, 18(10): 7068-7074.
(责任编辑 杨嘉蕾)
/
(上接第100页)
[15] 张学镭, 陈海平. 回收循环水余热的热泵供热系统热力性能分析[J]. 中国电机工程学报, 2013, 33(8): 1-8.
ZHANG Xuelei, CHEN Haiping. Thermodynamic analysis of heat pump heating supply systems with circulating water heat recovery[J]. Proceedings of the CSEE, 2013, 33(8): 1-8.
[16] 曹欢, 张光明, 牛玉广, 等. 耦合热泵的热电联产机组机理模型研究[J]. 热力发电, 2021, 50(3): 129-137.
CAO Huan, ZHANG Guangming, NIU Yuguang, et al. Mechanism model analysis for CHP units coupled with heat pump[J]. Thermal Power Generation, 2021, 50(3): 129-137.
[17] 边重阳, 朱月振, 张明琨. 基于热泵的供热机组深度调峰试验研究[J]. 热电技术, 2019(2): 4-7.
BIAN Chongyang, ZHU Yuezhen, ZHANG Mingkun. Experimental research on deep peak adjustment of heating unit based on heat pump[J]. Cogeneration Power Technology, 2019(2): 4-7.
[18] 高耀岿, 曾德良, 平博宇, 等. 吸收式热泵供热机组安全区的计算[J]. 热力发电, 2020, 49(2): 58-64.
GAO Yaokui, ZENG Deliang, PING Boyu, et al. Calculation of safe operation area for CHP units with absorption heat pump[J]. Thermal Power Generation, 2020, 49(2): 58-64.
[19] 朱翰超, 马蕊. 考虑需求侧管理的冷热电联供微电网优化配置方法[J]. 电力系统保护与控制, 2019, 47(2): 139-146.
ZHU Hanchao, MA Rui. Optimal configuration method of CCHP microgrid considering demand side manage-ment[J]. Power System Protection and Control, 2019, 47(2): 139-146.
[20] WANG W, LIU J, GAN Z, et al. Flexible control of combined heat and power units based on heat-power estimation and coordination[J]. International Journal of Electrical Power & Energy Systems, 2020, 123: 106261.
(责任编辑 杜亚勤)

备注/Memo

向小凤(1980),女,博士,高级工程师,主要研究方向为烟气脱硝技术,xiangxiaofeng@tpri.com.cn。

更新日期/Last Update: 2021-10-15