[1]朱玉铭,姜玉雁,梁世强,等.超临界二氧化碳布雷顿发电循环压缩机实验研究进展[J].热力发电,2020,49(10):11-20.[doi:10.19666/j.rlfd.202002046 ]
 ZHU Yuming,JIANG Yuyan,LIANG Shiqiang,et al.Experimental research progress of supercritical carbon dioxide Brayton cycle compressor[J].Thermal Power Generation,2020,49(10):11-20.[doi:10.19666/j.rlfd.202002046 ]
点击复制

超临界二氧化碳布雷顿发电循环压缩机实验研究进展

参考文献/References:

[1] PERSICHILLI M, KACLUDIS A, ZDANKIEWICZ E, et al. Supercritical CO2 power cycle developments and comer-cialization: why ScCO2 can displace steam[C]. Power-Gen India & Central Asia 2012. Pragati Maidan, New Delhi, India, 19-21 April, 2012.
[2] FLEMING D, HOLSCHUH T, CONBOY T, et al. Scaling considerations for a multi-megawatt class supercritical CO2 Brayton cycle and path forward for commercialization[C]// ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection, 2012: 953-960.
[3] CONBOY T, PASCH J, FLEMING D. Control of a supercritical CO2 recompression Brayton cycle demons-tration loop[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(11): V008T34A007.
[4] KIMBALL K J, CLEMENTONI E M. Supercritical carbon dioxide Brayton power cycle development overview[C]// Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mecha-nical Engineers Digital Collection, 2012: 931-940.
[5] UTAMURA M, HASUIKE H, OGAWA K, et al. Demons-tration of supercritical CO2 closed regenerative Brayton cycle in a bench scale experiment[C]// Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engi-neers Digital Collection, 2012: 155-164.
[6] IWAI Y, ITOH M, MORISAWA Y, et al. Development approach to the combustor of gas turbine for oxy-fuel, supercritical CO2 cycle[C]// Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposi-tion. American Society of Mechanical Engineers Digital Collection, 2015.
[7] CHO J, SHIN H, CHO J, et al. Preliminary power generating operation of the supercritical carbon dioxide power cycle experimental test loop with a turbo-generator[C]//Proceedings of the 6th International Symposium-Supercritical CO2 Power Cycles. Pittsburgh, PA, USA. 2018: 27-29.
[8] AHN Y, LEE J, KIM S G, et al. Design consideration of supercritical CO2 power cycle integral experiment loop[J]. Energy, 2015, 86: 115-127.
[9] CHO J, SHIN H, CHO J, et al. Development and power generating operation of the supercritical carbon dioxide power cycle experimental test loop in KIER[C]// Proceedings of 3rd European Conference on Supercritical CO2 (sCO2) Power Systems 2019: 19th-20th September 2019: 116-124.
[10] WRIGHT S A, RADEL R F, VERNON M E, et al. Operation and analysis of a supercritical CO2 Brayton cycle[R]. Sandia Report, No. SAND2010-0171, 2010: 31.
[11] NOALL J S, PASCH J. Achievable efficiency and stability of supercritical CO2 compression systems[C]// Supercri-tical CO2 Power Cycle Symposium. Pennsylvania Pitts-burgh, 2014.
[12] CLEMENTONI E M, COX T L, KING M A. Off-nominal component performance in a supercritical carbon dioxide Brayton cycle[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(1): 011703.
[13] PARK J H, BAE S W, PARK H S, et al. Transient analysis and validation with experimental data of supercritical CO2 integral experiment loop by using MARS[J]. Energy, 2018, 147: 1030-1043.
[14] CHOA S K, LEEA J I, LEEB J, et al. External loss analysis of a supercritical CO2 radial compressor[C]. Transactions of the Korean Nuclear Society Spring Meeting. 2017.
[15]CHA J E, BAE S W, LEE J, et al. Operation results of a closed supercritical CO2 simple Brayton cycle[C]. The 5th International Symposium: Supercritical CO2 Power Cycles. 2016.
[16] BALTADJIEV N D, LETTIERI C, SPAKOVSZKY Z S. An investigation of real gas effects in supercritical CO2 centrifugal compressors[J]. Journal of Turbomachinery, 2015, 137(9): 091003.1-091003.12.
[17] PECNIK R, RINALDI E, COLONNA P. Computational fluid dynamics of a radial compressor operating with supercritical CO2[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(12): 122301.
[18] 赵航, 邓清华, 黄雯婷, 等. 超临界二氧化碳离心压缩机叶顶两相流动研究[J]. 工程热物理学报, 2015, 36(7): 1433-1436.
ZHAO Hang, DENG Qinghua, HUANG Wenting, et al. Numerical investigation on the blade tip two-phase flow characteristics of a supercritical CO2 centrifugal com-pressor[J]. Journal of Engineering Thermophysics, 2015, 36(7): 1433-1436.
[19] LEWIS J, CLEMENTONI E, COX T, et al. Effect of com-pressor inlet temperature on cycle performance for a supercritical carbon dioxide Brayton cycle[C]. The 6th International Supercritical CO2 Power Cycles Sympo-sium, 2018.
[20] MOORE J, CICH S, DAY M, et al. Commissioning of a 1 MWe supercritical CO2 test loop[C]. The 6th Interna-tional Supercritical CO2 Power Cycles Symposium. 2018.
[21] ALLISON T C, SMITH N R, PELTON R, et al. Experi-mental validation of a wide-range centrifugal compressor stage for supercritical CO2 power cycles[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(6): 061011.1-061011.9.
[22] PASCH J, STAPP D. Testing of a new turbocompressor for supercritical carbon dioxide closed Brayton cycles[C]. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection, 2018.
[23] RAPP L M, STAPP D. Experimental testing of a 1 MW sCO2 turbocompressor[C]. The 3rd European Conference on Supercritical CO2 (sCO2) Power Systems 2019. 19th-20th September, 2019.
[24] KACLUDIS A, LYONS S, NADAV D, et al. Waste heat to power (WH2P) applications using a supercritical CO2-based power cycle[C]//Proceedings of the Power-Gen International 2012. Orlando, FL U.S.A., 2012: 11-13.
[25] HELD T J. Initial test results of a megawatt-class supercritical CO2 heat engine[C]//Proceedings of the 4th International Symposium: Supercritical CO2 Power Cycles. 2014: 9-10.
[26] LI H Z, ZHANG Y F, YAO M Y, et al. Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop[J]. Energy, 2019, 174: 792-804.
[27] Mechanical vibration: evaluation of machine vibration by measurements on non-rotating parts: ISO 10816: 1995[S].
(责任编辑 李园)

相似文献/References:

[1]姜 超,董鹤鸣,谢 敏,等.超临界二氧化碳工质品质规范研究及展望[J].热力发电,2022,51(01):21.[doi:10.19666/j.rlfd.202109160]
 JIANG Chao,DONG Heming,XIE Min,et al.Research and prospect of quality standardization of supercritical carbon dioxide working medium[J].Thermal Power Generation,2022,51(10):21.[doi:10.19666/j.rlfd.202109160]
[2]杨 温,肖 刚,邢凯翔,等.超临界CO2换热特性实验研究[J].热力发电,2018,(12):29.[doi:10.19666/j.rlfd.201804066]
 YANG Wen,XIAO Gang,XING Kaixiang,et al.Experimental investigation on heat transfer characteristics of supercritical CO2[J].Thermal Power Generation,2018,(10):29.[doi:10.19666/j.rlfd.201804066]
[3]郑华雷,吴雪蓓,刘 斌.超临界二氧化碳闭式循环性能仿真研究及应用[J].热力发电,2020,49(04):63.[doi:10.19666/j.rlfd.201909248 ]
 ZHENG Hualei,WU Xuebei,LIU Bin.Study and application of performance simulation of supercritical CO2 closed cycles[J].Thermal Power Generation,2020,49(10):63.[doi:10.19666/j.rlfd.201909248 ]
[4]肖 博,朱忠亮,李瑞涛,等.超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展[J].热力发电,2020,49(10):30.[doi:10.19666/j.rlfd.202006155 ]
 XIAO Bo,ZHU Zhongliang,LI Ruitao,et al.Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid[J].Thermal Power Generation,2020,49(10):30.[doi:10.19666/j.rlfd.202006155 ]
[5]刘建峰,桑丽霞,王凯音,等.超临界二氧化碳太阳能热发电系统中集热蓄热颗粒及其性质研究现状[J].热力发电,2020,49(10):38.[doi:10.19666/j.rlfd.202006174 ]
 LIU Jianfeng,SANG Lixia,WANG Kaiyin,et al.Research status of properties of particles as thermal energy storage medium in supercritical carbon dioxide cycle for concentrated solar power[J].Thermal Power Generation,2020,49(10):38.[doi:10.19666/j.rlfd.202006174 ]
[6]张谨奕,王 含,白 宁,等.热泵储电系统的热力学分析[J].热力发电,2020,49(8):43.[doi:10.19666/j.rlfd.202003106 ]
 ZHANG Jinyi,WANG Han,BAI Ning,et al.Thermodynamic analysis for heat pump electricity storage system[J].Thermal Power Generation,2020,49(10):43.[doi:10.19666/j.rlfd.202003106 ]
[7]应祺煜,诸葛伟林,张扬军,等.多级轴流S-CO2透平气动设计及仿真分析[J].热力发电,2020,49(8):1.[doi:10.19666/j.rlfd.202004180]
 YING Qiyu,ZHUGE Weilin,ZHANG Yangjun,et al.Aerodynamic design and numerical analysis of a multi-stage axial S-CO2 turbine[J].Thermal Power Generation,2020,49(10):1.[doi:10.19666/j.rlfd.202004180]
[8]孙 辉,章立新,杨其国,等.基于GA-BP神经网络的超临界二氧化碳折射率及密度预测[J].热力发电,2020,49(10):59.[doi:10.19666/j.rlfd.202004121 ]
 SUN Hui,ZHANG Lixin,YANG Qiguo,et al.Prediction of refractive index and density of supercritical carbon dioxide based on GA-BP neural network[J].Thermal Power Generation,2020,49(10):59.[doi:10.19666/j.rlfd.202004121 ]
[9]张一帆,李红智,杨 玉,等.垂直上升加热管道内超临界二氧化碳流动不稳定性研究[J].热力发电,2020,49(10):65.[doi:10.19666/j.rlfd.202006160 ]
 ZHANG Yifan,LI Hongzhi,YANG Yu,et al.Research on flow instability of supercritical supercritical carbon dioxide in a vertical upward heated tube[J].Thermal Power Generation,2020,49(10):65.[doi:10.19666/j.rlfd.202006160 ]
[10]梁志远,桂 雍,王云刚,等.超临界二氧化碳环境下耐热钢T91腐蚀行为机理研究[J].热力发电,2020,49(10):73.[doi:10.19666/j.rlfd.202003040 ]
 LIANG Zhiyuan,GUI Yong,WANG Yungang,et al.Corrosion behavior and mechanism of heat-resistant steel T91 in supercritical carbon dioxide environment[J].Thermal Power Generation,2020,49(10):73.[doi:10.19666/j.rlfd.202003040 ]
[11]陈渝楠,张一帆,刘文娟,等.超临界二氧化碳火力发电系统模拟研究[J].热力发电,2017,(2):22.
 CHEN Yunan,ZHANG Yifan,LIU Wenjuan,et al.Simulation study on supercritical carbon dioxide thermal power system[J].Thermal Power Generation,2017,(10):22.
[12]吴佐莲,张一帆,张 纯,等.煤基超临界二氧化碳热电联产机组调峰能力研究[J].热力发电,2018,(6):29.[doi:10.19666/j.rlfd.201802067 ]
 WU Zuolian,ZHANG Yifan,ZHANG Chun,et al.Study on peak regulation capacity of a coal-fired supercritical carbon dioxide cogeneration unit[J].Thermal Power Generation,2018,(10):29.[doi:10.19666/j.rlfd.201802067 ]
[13]张蓉芳,赵民富,王晓丁,等.钠冷快堆耦合超临界二氧化碳布雷顿循环中的PCHE研究进展[J].热力发电,2020,49(10):48.[doi:10.19666/j.rlfd.202006176 ]
 ZHANG Rongfang,ZHAO Minfu,WANG Xiaoding,et al.Study on PCHE in advances sodium cold fast reactor coupled supercritical carbon dioxide Brayton cycle: a review[J].Thermal Power Generation,2020,49(10):48.[doi:10.19666/j.rlfd.202006176 ]
[14]王为术,黄志豪,赵世飞,等.超临界二氧化碳600 MW燃煤发电系统热力学性能仿真研究[J].热力发电,2020,49(10):101.[doi:10.19666/j.rlfd.202006159]
 WANG Weishu,HUANG Zhihao,ZHAO Shifei,et al.Simulation research on thermodynamic performance of supercritical carbon dioxide 600 MW coal-fired power system[J].Thermal Power Generation,2020,49(10):101.[doi:10.19666/j.rlfd.202006159]
[15]佟勇婧,段立强,庞力平.新型超临界二氧化碳分流再压缩一次再热燃煤发电系统设计优化[J].热力发电,2020,49(12):1.[doi:10.19666/j.rlfd.202006183 ]
 TONG Yongjing,DUAN Liqiang,PANG Liping.Design optimization of new supercritical carbon dioxide split recompression single reheat coal-fired power generation system[J].Thermal Power Generation,2020,49(10):1.[doi:10.19666/j.rlfd.202006183 ]
[16]徐婷婷,赵红霞,韩吉田,等.结构和工况参数对印刷电路板式换热器性能的影响[J].热力发电,2020,49(12):28.[doi:10.19666/j.rlfd.202006188 ]
 XU Tingting,ZHAO Hongxia,HAN Jitian,et al.Influence of structural and operating condition parameters on performance of printed circuit heat exchanger[J].Thermal Power Generation,2020,49(10):28.[doi:10.19666/j.rlfd.202006188 ]
[17]刘晨光,张 磊.超临界二氧化碳离心式压缩机研究进展[J].热力发电,2021,50(05):34.[doi:10.19666/j.rlfd.202010268]
 LIU Chenguang,ZHANG Lei.Research progress of supercritical carbon dioxide centrifugal compressor[J].Thermal Power Generation,2021,50(10):34.[doi:10.19666/j.rlfd.202010268]
[18]刘易飞,张燕平,王渊静.采用压缩储能的新型超临界二氧化碳布雷顿循环塔式太阳能热发电系统性能分析[J].热力发电,2021,50(05):51.[doi:10.19666/j.rlfd.202101003]
 LIU Yifei,ZHANG Yanping,WANG Yuanjing.Performance analysis of a new supercritical carbon dioxide Brayton cycle tower solar thermal power generation system using compressed energy storage[J].Thermal Power Generation,2021,50(10):51.[doi:10.19666/j.rlfd.202101003]
[19]邓成刚,陈宇明,陈 坤,等.50 MW超临界二氧化碳燃煤电厂热经济性分析[J].热力发电,2021,50(12):160.[doi:10.19666/j.rlfd.202106108 ]
 DENG Chenggang,CHEN Yuming,CHEN Kun,et al.Thermoeconomic analysis for 50 MW supercritical carbon dioxide coal-fired power plant[J].Thermal Power Generation,2021,50(10):160.[doi:10.19666/j.rlfd.202106108 ]

备注/Memo

朱玉铭(1993),男,博士研究生,主要研究方向为超临界二氧化碳压缩机,zhuyuming@iet.cn。

更新日期/Last Update: 2020-10-15