[1]胡玥,徐钢,段栋伟,等.碳减排技术发展现状[J].热力发电,2017,(2):1-6.
 HU Yue,XU Gang,DUAN Dongwei,et al.Current situation and performance comparison of carbon capture technologies[J].Thermal Power Generation,2017,(2):1-6.
点击复制

碳减排技术发展现状

参考文献/References:

[1]Intergovernmental Panel on Climate Change (IPCC).IPCC's fourth assessment report (AR4)[R].United Kingdom:Cambridge University Press,2007:25.
[2]B P.Statistical review of world energy[M].British Petroleum,2014:19.
[3]庄贵阳.哥本哈根气候博弈与中国角色的再认识[J].外交评论(外交学院学报),2009,26(6):13-21.ZHUANG Guiyang.The Copenhagen climate game with Chinese characters between the Copenhagen climate with Chinese characters[J].Foreign Comments,2009,26(6):13-21.
[4]任英.高压变频调速技术在发电厂中的应用[J].电工电气,2013(12):33-35.REN Ying.Application of high-voltage variable frequency speed regulation technology in power plant[J].Jiangsu Electrical Apparatus,2013(12):33-35.
[5]陈建华.国产引进型 500 MW汽轮机通流改造的分析研究[D].广州:华南理工大学,2012:21.CHEN Jianhua.Transformation on the flow of imported 500 MW steam turbine made in domestic research[D].Guangzhou:South China University of Technology,2012:21.
[6]MANZOLINI G,SANCHEZ FERNANDEZ E,REZVANI S,et al.Economic assessment of novel amine based CO2 capture technologies integrated in power plants based on European Benchmarking Task Force methodology[J].Applied Energy,2015,138:546-558.
[7]AMANN J M G,BOUALLOU C.CO2 capture from power stations running with natural gas (NGCC) and pulverized coal (PC):Assessment of a new chemical solvent based on aqueous solutions of N-methyldiethanolamine+triethylene tetramine[J].Energy Procedia,2009,1(1):909-916.
[8]ARACHCHIGE U S P R,MELAAENM C.Aspen plus simulation of CO2 removal from coal and gas fired power plants[J].Energy Procedia,2012,23:391-399.
[9]LUCQUIAUD M,GIBBINS J.Effective retrofitting of post-combustion CO2 capture to coal-fired power plants and insensitivity of CO2 abatement costs to base plant efficiency[J].International Journal of Greenhouse Gas Control,2011,5:213-226.
[10]LUCQUIAUD M,GIBBINS J.Retrofitting CO2 capture-ready fossil plants with post-combustion capture.Part1:equirements for supercritical pulverized coal plants using solvent-based flue gas scrubbing[J].Power and Energy,2009,223:427-438.
[11]ROMEO L M,BOLEA I,ESCOSA J M.Integration of power plant and amine scrubbing to reduce CO2 capture costs[J].Applied Thermal Engineering,2008,28:1039-1046.
[12]PARK K,SHIN D,YOON E S.The cost of energy analysis and energy planning for emerging,fossil fuel power plants based on the climate change scenarios[J].Energy,2011,36:3606-3612.
[13]MARCHIORO YSTAD P A,BOLLAND O,HILLESTAD M.NGCC and hard-coal power plant with CO2 capture based on absorption[J].Energy Procedia,2012,23:33-44.
[14]WANGG,YAN W,CHEN S,et al.Multivariable constrained predictive control of main steam temperature in ultra-supercritical coal-fired power unit[J].Journal of the Energy Institute,2015,88(2):181-187.
[15]NOWAK G,RUSIN A.Shape and operation optimisation of a supercritical steam turbine rotor[J].Energy Conversion and Management,2013,74:417-425.
[16]SUN F,FU L,ZHANG S,et al.New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China[J].Applied Thermal Engineering,2012,37:136-144.
[17]KARLSSON C,ARRIAGADA J,GENRUP M.Detection and interactive isolation of faults in steam turbines to support maintenance decisions[J].Simulation Modelling Practice and Theory,2008,16(10):1689-1703.
[18]International Renewable Energy Agency.Renewable energy prospects:China[DB/OL].[2016-6-6].http://www.irena.org/remap/IRENA_REmap_China_report_2014.pdf.
[19]THOMAS B,ROBERT W,STEFANO C,et al.Co-production of hydrogen,electricity and CO2 from coal with commercially ready technology.Part B:Economic analysis[J].International Journal of Hydrogen Energy,2005,30:769-784.
[20]STOLZENBERGER C G.European road map for 700 ℃ ultra supercritical power plant[J].Energy Materials,2007,2(3):141-144.
[21]HUANG B,XU S,GAO S,et al.Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing Coal-Fired Power Station[J].Applied Energy,2010,87:3347-3354.
[22]LUCQUIAUD M,GIBBINS J.On the integration of CO2 capture with coal-fired power plants:a methodology to assess and optimise solvent-based post-combustion capture systems[J].Chemical Engineering Research and Design,2011,89:1553-1571.
[23]DONG J,ZHANG X,JIANG X ,et al.Economic Analysis and policy suggestions on gas power generation projects considering carbon emission reduction[J].Procedia Environmental Sciences,2011,11(Part B):1029-1038.
[24]中国电力企业联合会规划与统计数据[EB/OL].[2016-6-6].http://www.cec.org.cn/guihuayutongji/.Planning and statistics of China Electric Power Enterprises[EB/OL].[2016-6-6].http://www.cec.org.cn/guihuayutongji/.

相似文献/References:

[1]丁淑英,张清宇,徐卫国,等.电力生产环境成本计算方法的研究[J].热力发电,2007,(02):1.
[2]陈渝楠,张一帆,刘文娟,等.超临界二氧化碳火力发电系统模拟研究[J].热力发电,2017,(2):22.
 CHEN Yunan,ZHANG Yifan,LIU Wenjuan,et al.Simulation study on supercritical carbon dioxide thermal power system[J].Thermal Power Generation,2017,(2):22.
[3]任洪波,卢胤龙,吴 琼.基于供需耦合分析的天然气分布式热电联产系统环境效益动态评估[J].热力发电,2017,(10):16.
 REN Hongbo,LU Yinlong,WU Qiong.Dynamic environmental assessment for natural gas cogeneration systems based on supply-demand coupling analysis[J].Thermal Power Generation,2017,(2):16.
[4]何洪浩,李文军,徐 众,等.火力发电厂污泥掺烧技术应用[J].热力发电,2020,49(03):137.[doi:10.19666/j.rlfd.201908218]
 HE Honghao,LI Wenjun,XU Zhong,et al.Application of sludge co-incineration technology in coal fired power plant[J].Thermal Power Generation,2020,49(2):137.[doi:10.19666/j.rlfd.201908218]
[5]高满达,李庚达,王 昕,等.火电厂智能燃料典型建设方向与应用研究进展[J].热力发电,2021,50(05):10.[doi:10.19666/j.rlfd.202007210]
 GAO Manda,LI Gengda,WANG Xin,et al.Progress on typical construction direction and application for smart fuel in thermal power plants[J].Thermal Power Generation,2021,50(2):10.[doi:10.19666/j.rlfd.202007210]

备注/Memo

胡玥(1989—),女,博士研究生,主要研究方向为电站系统优化节能及二氧化碳减排等技术,huyue1989@necpu.edu.cn。

更新日期/Last Update: 2017-01-24